Table 3 The results of TPELGBM classifier with different features of 1-s EEG segment.
From: A novel stroke classification model based on EEG feature fusion
Classifier | Â | Accuracy | Precision | Recall | f1-score |
---|---|---|---|---|---|
DT | 1s | 0.9231 | 0.9226 | 0.9224 | 0.9225 |
3s | 0.6121 | 0.6103 | 0.6096 | 0.6099 | |
SVM | 1s | 0.8511 | 0.8468 | 0.8524 | 0.8496 |
3s | 0.8052 | 0.8079 | 0.8081 | 0.8080 | |
RF | 1s | 0.9387 | 0.9255 | 0.9108 | 0.9166 |
3s | 0.9044 | 0.8962 | 0.8928 | 0.8889 | |
TEPLGBM | 1s | 0.9689 | 0.9676 | 0.9669 | 0.9672 |
3s | 0.9372 | 0.9266 | 0.9070 | 0.9167 |