Table 7 Comparison of adversarial texts’ perplexity. In each row, the minimum value for soft-label attacks is marked by underlining, and the minimum value for hard-label attacks is emphasized in bold.
From: Hard label adversarial attack with high query efficiency against NLP models
Data | Model | Attack | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TextFooler | GA-A | PSO-A | LSHA | HLBB | TextHoaxer | LeapAttack | SSPAttack | QEAttack | ||
AG | BERT | 44.64 | 32.08 | 46.91 | 51.50 | 251.20 | 352.06 | 438.77 | 234.46 | 247.96 |
WordCNN | 46.66 | 35.50 | 46.87 | 52.66 | 206.12 | 266.23 | 307.54 | 182.65 | 176.05 | |
WordLSTM | 48.01 | 31.73 | 42.67 | 48.15 | 254.12 | 364.78 | 416.77 | 234.76 | 230.50 | |
MR | BERT | 3.70 | 36.45 | 59.78 | 60.19 | 2719.32 | 3068.97 | 1856.51 | 1575.14 | 1128.96 |
WordCNN | 23.67 | 56.74 | 67.86 | 6.84 | 504.77 | 722.04 | 481.62 | 478.45 | 191.70 | |
WordLSTM | 22.68 | 63.56 | 86.78 | 40.86 | 729.04 | 957.83 | 755.15 | 372.46 | 147.09 | |
Yelp | BERT | 20.65 | 21.36 | 20.89 | 24.23 | 110.49 | 124.75 | 173.90 | 97.62 | 85.85 |
WordCNN | 17.39 | 16.49 | 23.07 | 16.66 | 122.68 | 130.14 | 135.89 | 86.55 | 94.44 | |
WordLSTM | 15.39 | 20.29 | 19.60 | 16.51 | 68.87 | 101.88 | 130.09 | 79.82 | 98.72 | |
Yahoo | BERT | 23.18 | 25.57 | 17.31 | 29.17 | 118.54 | 116.31 | 162.63 | 110.75 | 108.03 |
WordCNN | 30.77 | 23.16 | 16.27 | 27.53 | 103.57 | 94.42 | 138.49 | 92.38 | 90.23 | |
WordLSTM | 36.00 | 23.05 | 22.74 | 25.99 | 121.06 | 129.23 | 164.33 | 111.97 | 130.77 | |
IMDB | BERT | 8.43 | 11.53 | 10.62 | 9.76 | 24.45 | 36.32 | 44.24 | 20.45 | 19.35 |
WordCNN | 6.76 | 12.72 | 9.48 | 8.43 | 21.93 | 27.05 | 31.90 | 17.86 | 15.95 | |
WordLSTM | 5.85 | 11.32 | 9.20 | 8.44 | 22.00 | 25.23 | 33.15 | 16.97 | 15.40 | |
Average | 23.59 | 28.10 | 33.34 | 28.46 | 358.54 | 434.48 | 351.40 | 247.49 | 185.40 |