Table 1 Introduction of hyperelastic constitutive model.
Name | Material constant | Expression of strain energy density function | Constitutive equation |
---|---|---|---|
M-R(2) | C10, C01 | \(W = C_{10} (I_{1} - 3) + C_{01} \left( {I_{2} - 3} \right)\) | \(\sigma = 2[(1 + \varepsilon )^{2} - (1 + \varepsilon )^{ - 1} ][C_{10} + C_{01} (1 + \varepsilon )^{ - 1} ]\) |
M-R(3) | C10, C01, C11 | \(\begin{gathered} W = C_{10} (I_{1} - 3) + C_{01} \left( {I_{2} - 3} \right) \\ + C_{11} \left( {I_{1} - 3} \right)\left( {I_{2} - 3} \right) \\ \end{gathered}\) | \(\begin{gathered} \sigma = 2\left[ {(1 + \varepsilon )^{2} - (1 + \varepsilon )^{ - 1} } \right] \cdot \left[ {C_{10} + C_{11} [2(1 + \varepsilon ) + (1 + \varepsilon )^{ - 2} - 3} \right] \hfill \\ \;\;\;\; + \left[ {C_{01} + C_{11} \left( {2(1 + \varepsilon )^{ - 1} + (1 + \varepsilon )^{2} - 3} \right)](1 + \varepsilon )^{ - 1} } \right] \hfill \\ \end{gathered}\) |
M-R(5) | C10, C01, C11, C20, C02 | \(\begin{gathered} W = C_{10} (I_{1} - 3) + C_{01} \left( {I_{2} - 3} \right) \\ + C_{11} \left( {I_{1} - 3} \right)\left( {I_{2} - 3} \right) \\ + C_{20} (I_{1} - 3)^{2} + C_{02} (I_{2} - 3)^{2} \\ \end{gathered}\) | \(\begin{gathered} \sigma = 2[(1 + \varepsilon )^{2} - (1 + \varepsilon )^{ - 1} ][C_{10} + C_{11} \left( {I_{2} - 3} \right) \\ + 2C_{20} (I_{1} - 3) + (1 + \varepsilon )^{ - 1} [C_{01} + C_{11} \left( {I_{1} - 3} \right) + 2C_{02} (I_{2} - 3)]] \\ \end{gathered}\) |
Yeoh | C10, C20, C30 | \(\begin{gathered} W = C_{10} (I_{1} - 3) + C_{20} (I_{1} - 3)^{2} \\ + C_{30} (I_{1} - 3)^{3} \\ \end{gathered}\) | \(\begin{gathered} \sigma = 2[(1 + \varepsilon )^{2} - (1 + \varepsilon )^{ - 1} ][C_{10} + 2C_{20} [(1 + \varepsilon )^{2} + 2(1 + \varepsilon )^{ - 1} - 3] \\ + 3C_{30} [(1 + \varepsilon )^{2} + 2(1 + \varepsilon )^{ - 1} - 3]^{2} ] \\ \end{gathered}\) |
Ogden(2) | μ, α | \(U = \frac{2\mu }{{\alpha^{2} }}(\lambda_{1}^{\alpha } + \lambda_{2}^{\alpha } + \lambda_{3}^{\alpha } - 3)\) | \(\sigma = \frac{2\mu }{\alpha }\left( {(1 + \varepsilon )^{(\alpha - 1)} - (1 + \varepsilon )^{{ - \frac{(\alpha - 1)}{2}}} } \right)\) |
Ogden(4) | μ1, α1, μ2, α2 | \(\begin{gathered} U = \frac{{2\mu_{1} }}{{\alpha_{1}^{2} }}(\lambda_{1}^{{\alpha_{1} }} + \lambda_{2}^{{\alpha_{1} }} + \lambda_{3}^{{\alpha_{1} }} - 3) \\ + \frac{{2\mu_{2} }}{{\alpha_{2}^{2} }}(\lambda_{1}^{{\alpha_{2} }} + \lambda_{2}^{{\alpha_{2} }} + \lambda_{3}^{{\alpha_{2} }} - 3) \\ \end{gathered}\) | \(\begin{gathered} \sigma = \frac{{2\mu_{1} }}{{\alpha_{1} }}\left( {(1 + \varepsilon )^{{(\alpha_{1} - 1)}} - (1 + \varepsilon )^{{ - \frac{{(\alpha_{1} - 1)}}{2}}} } \right) \\ + \frac{{2\mu_{2} }}{{\alpha_{2} }}\left( {(1 + \varepsilon )^{{(\alpha_{2} - 1)}} - (1 + \varepsilon )^{{ - \frac{{(\alpha_{2} - 1)}}{2}}} } \right) \\ \end{gathered}\) |