Table 1 The ZDT functions of multi-objective optimization79.
Name | Formula and variables | Optimum functions |
---|---|---|
ZDT1 | \(f_1=x_1\) \(g=1+9\cdot \sum _{i=2}^m x_i/\left( m-1\right)\) \(h=1-\sqrt{f_1/g}\) \(m=30,\quad x_i \in \left[ 0,1\right]\) | \(0\le x_1\le 1\) \(and \ x_i=0 \ for \ i=2,\dots ,n\) |
ZDT2 | \(f_1=x_1\) \(g=1+9\cdot \sum _{i=2}^m x_i/\left( m-1\right)\) \(h=1-\left( f_1/g\right) ^2\) \(m=30,\quad x_i \in \left[ 0,1\right]\) | \(0\le x_1\le 1\) \(and \ x_i=0 \ for \ i=2,\dots ,n\) |
ZDT3 | \(f_1=x_1\) \(g=1+9\cdot \sum _{i=2}^m x_i/\left( m-1\right)\) \(h=1-\sqrt{f_1/g}-\left( f_1/g\right) \sin \left( 10\pi f_1 \right)\) \(m=30,\quad x_i \in \left[ 0,1\right]\) | \(0\le x_1\le 0.0830\) \(or\ 0.1822\le x_1\le 0.2577\) \(or\ 0.4093\le x_1\le 0.4538\) \(or\ 0.6183 \le x_1\le 0.6525\) \(or\ 0.8233\le x_1\le 0.8518\) \(and\ x_i=0 \ for \ i=2,\dots ,n\) |
ZDT4 | \(f_1=x_1\) \(g=1+10\left( m-1\right) +\sum _{i=2}^m\left( x_i^2-10 \cos \left( 4\pi x_i \right) \right)\) \(h=1-\sqrt{f_1/g}-\left( f_1/g\right) \sin \left( 10\pi f_1 \right)\) \(m=10,\quad x_1\in \left[ 0,1\right] \ and \ x_2,\dots ,x_m\epsilon \left[ -5,5\right]\) | \(0\le x_1\le 1\) \(and \ x_i=0\ for\ i=2,\dots ,n\) |