Table 3 Three separate models testing different social support types as moderators between AI chat type (independent variable) and occupational self-efficacy (dependent variable).
Model 1 (informational support) | Model 2 (instrumental support) | Model 3 (emotional support) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Estimate | 95% CI | SE | β | Estimate | 95% CI | SE | β | Estimate | 95% CI | SE | β | ||||
Fixed effects | |||||||||||||||
(Intercept) | 3.10*** | [2.88, 3.31] | 0.11 | 3.09*** | [2.87, 3.31] | 0.11 | 3.13*** | [2.92, 3.33] | 0.10 | ||||||
Time point (pre/post) | 0.05 | [− 0.09, 0.19] | 0.07 | 0.11 | 0.05 | [− 0.09, 0.19] | 0.07 | 0.12 | 0.08 | [− 0.06, 0.22] | 0.07 | 0.12 | |||
Chat type | − 0.11 | [− 0.41, 0.19] | 0.15 | 0.01 | − 0.10 | [− 0.40, 0.20] | 0.15 | 0.02 | − 0.17 | [− 0.44, 0.11] | 0.14 | − 0.04 | |||
Social support | 0.06 | [− 0.12, 0.24] | 0.09 | 0.20 | 0.02 | [− 0.16, 0.21] | 0.09 | 0.18 | 0.23* | [0.01, 0.45] | 0.12 | 0.42 | |||
Chat type × social support | 0.15 | [− 0.12, 0.43] | 0.14 | 0.07 | 0.22 | [− 0.06, 0.49] | 0.14 | 0.09 | 0.18 | [− 0.14, 0.49] | 0.16 | 0.03 | |||
Time point × chat type | 0.24* | [0.05, 0.43] | 0.10 | 0.08 | 0.25* | [0.06, 0.44] | 0.10 | 0.08 | 0.21* | [0.02, 0.40] | 0.10 | 0.07 | |||
Time point × social support | 0.06 | [− 0.05, 0.18] | 0.06 | 0.01 | 0.07 | [− 0.05, 0.19] | 0.06 | − 0.01 | 0.22** | [0.07, 0.37] | 0.08 | 0.05 | |||
Time point × chat type × social support | − 0.10 | [− 0.28, 0.07] | 0.09 | − 0.04 | − 0.16 | [− 0.34, 0.01] | 0.09 | − 0.06 | − 0.24* | [− 0.46, − 0.03] | 0.11 | − 0.07 | |||
Random effects | |||||||||||||||
Random intercept variance | 0.47 | 0.47 | 0.39 | ||||||||||||
Residual variance | 0.12 | 0.12 | 0.12 |