Table 17 The proposed models’ results for the fire detection problem.

From: Fractal and chaotic map-enhanced grey wolf optimization for robust fire detection in deep convolutional neural networks

Algorithm

ACDs

AFEs

SR

IPFA

43.22

17,421

77.11

IPALO

44.11

17,214

75.22

IPPSO

50.01

15,321

91.01

IPCF-GWO1

60.02

14,001

100

IPCF-GWO2

38.22

19,142

45.22

IPCF-GWO3

44.02

17,333

71.25

IPCF-GWO4

47.33

16,521

81.44

IPCF-GWO5

46.96

16,782

82.55

IPCF-GWO6

43.98

17,411

77.41

CAE-2

40.22

18,541

56.22

PGBM + DN-1

40.36

18,229

53.11

TIRBM

44.01

17,613

76.25

RandNet-2

47.98

16,325

85.22

ScatNet-2

40.11

18,013

66.99

LDANet-2

43.75

17,012

75.36

PCANet-2 (softmax)

47.25

16,022

81.20

SVM + Poly

40.00

18,653

57.33

SVM + RBF

40.52

18,003

68.02

DBN-3

43.56

17,001

79.01

NNet

43.11

17,532

77.11

SAA-3

46.25

16,041

86.97

EvoCNN

59.56

14,042

100