Table 3 The parameters associated with the framework layers and an illustrative case.

From: Fractal and chaotic map-enhanced grey wolf optimization for robust fire detection in deep convolutional neural networks

Layer type

Parameter

Range

Number of bits

Instance

Convolutional

Filter size

[1,8]

3

3(011)

Stride size

[1,4]

2

3(11)

Number of feature maps

[1,128]

7

5(000 0101)

Summary

12

011 000 0101 11

Pooling

Kernel size

[1,4]

2

3(11)

Stride size

[1,4]

2

3(11)

Type: maximum (1), average (2)

[1,2]

1

1(1)

Place holder

[1,128]

6

8(00 1000)

Summary

11

11 11 1 00 1000

Fully-connected

No. Neurons

[1,2048]

11

128(00010000000)

Summary

 

11

00010000000

Enfeebled

Place holder

[1,2048]

11

128(00010000000)

Summary

11

00010000000