Table 5 Performance Analysis of SRB-VGG19.
CNN models | Accuracy (%) |
---|---|
Mask-RCNN2 | 65.60 |
BPANN3 | 81.19 |
DeepLab5 | 79.70 |
DeepLab-ResNet9 | 80.90 |
FRCNN20 | 87.60 |
Deep CNN21 | 96.39 |
MobileNet37 | 83.30 |
ShuffleNetv2-Ghost32 | 88.40 |
AlexNet45 | 74.23 |
67.52 | |
71.65 | |
66.23 | |
Xception54 | 70.12 |
83.17 | |
81.36 | |
Proposed SRB-VGG19 FCL | 95.53 |
Proposed SRB-VGG19 Dense without ANL layer | 98.65 |
SRB-VGG19 Dense ANL model with ANL layer | 98.45 |