Table 1 Depth estimation result comparison with state-of-the-art models on the NYU dataset.
From: Monocular depth estimation via a detail semantic collaborative network for indoor scenes
Method | Accuracy (Higher is better) | Error (Lower is better) | ||||
---|---|---|---|---|---|---|
δ < 1.25 | δ < 1.252 | δ < 1.253 | REL | RMSE | Log10 | |
Eigen et al.28 | 0.611 | 0.887 | 0.971 | 0.215 | 0.907 | - |
Wang et al.23 | 0.605 | 0.890 | 0.970 | 0.220 | 0.745 | 0.094 |
Laina et al.31 | 0.811 | 0.953 | 0.988 | 0.127 | 0.573 | 0.055 |
Mousavian et al.24 | 0.568 | 0.856 | 0.956 | - | 0.816 | 0.061 |
Xu et al.25 | 0.811 | 0.954 | 0.987 | 0.121 | 0.586 | 0.052 |
Fu et al.29 | 0.828 | 0.965 | 0.992 | 0.115 | 0.509 | 0.051 |
Hu et al.26 | 0.866 | 0.975 | 0.993 | 0.115 | 0.530 | 0.050 |
Chen et al.39 | 0.878 | 0.977 | 0.994 | 0.111 | 0.514 | 0.048 |
Yu et al.27 | 0.772 | 0.942 | 0.984 | 0.159 | 0.599 | 0.068 |
Huynh et al.17 | 0.882 | 0.980 | 0.996 | 0.108 | 0.412 | - |
Bhat et al.18 | 0.903 | 0.984 | 0.997 | 0.103 | 0.364 | 0.044 |
Vaishakh et al.68 | 0.902 | 0.984 | 0.997 | 0.101 | 0.353 | 0.042 |
Kim et al.19 | 0.915 | 0.988 | 0.997 | 0.098 | 0.344 | 0.042 |
Vitor et al.69 | 0.895 | 0.965 | - | 0.104 | 0.389 | - |
Ours | 0.916 | 0.988 | 0.997 | 0.097 | 0.342 | 0.041 |