Table 2 The quantitative results of Gaussian denoising with different noise level on AWLD dataset (PSNR/SSIM). Bolditalic number represents the best result, while bold number indicates the second-best result.

From: Wild horseshoe crab image denoising based on CNN-transformer architecture

Method

sigma = 15

sigma = 25

sigma = 50

AVG

UI

UTI

TI

UI

UTI

TI

UI

UTI

TI

AP-BSN

37.19/0.9502

36.15/0.9496

35.82/0.9579

37.09/0.9487

35.27/0.9431

34.53/0.9368

35.72/0.9452

34.51/0.9361

31.92/0.8991

35.36/0.9407

DDT

38.68/0.9671

38.56/0.9617

36.69/0.9501

37.29/0.9503

37.39/0.9493

36.44/0.9508

36.29/0.9489

36.74/0.9516

36.03/0.9453

37.12/0.9528

MIRNetv2

37.19/0.9496

35.19/0.9437

35.28/0.9441

36.54/0.9504

34.21/0.9364

34.29/0.9359

35.46/0.9455

32.98/0.9028

32.88/0.9011

34.89/0.9344

MM-BSN

38.26/0.9613

36.19/0.9496

35.38/0.9446

37.41/0.9487

35.65/0.9443

34.18/0.9347

36.21/0.9432

32.93/0.9027

33.95/0.9104

35.57/0.9377

MPRNet

38.19/0.9608

35.04/0.9428

36.17/0.9495

37.94/0.9525

34.26/0.9360

35.91/0.9461

36.64/0.9458

31.01/0.8922

34.25/0.9348

35.49/0.9401

SwinIR

35.47/0.9561

33.57/0.9166

35.49/0.9537

34.18/0.9355

32.54/0.9001

34.37/0.9361

33.57/0.9126

30.04/0.8803

32.95/0.9008

33.58/0.9213

DDPG

38.34/0.9618

32.94/0.9012

37.58/0.9501

37.15/0.9487

31.27/0.8946

36.04/0.9488

35.72/0.9464

30.12/0.8801

35.52/0.9451

34.96/0.9308

Restormer

38.57/0.9635

37.06/0.9492

38.65/0.9633

36.52/0.9512

37.63/0.9508

37.07/0.9523

35.91/0.9468

36.16/0.9431

36.14/0.9460

37.08/0.9518

Ours

39.26/0.9789

38.27/0.9603

39.12/0.9684

37.53/0.9526

37.25/0.9495

37.34/0.9531

36.48/0.9498

36.83/0.9521

37.02/0.9511

37.83/0.9573