Table 1 Comparison of different methods on the SHMetro dataset.

From: TSTA-GCN: trend spatio-temporal traffic flow prediction using adaptive graph convolution network

Time

15 min

30 min

60 min

Metric

RMSE

MAE

MAPE

RMSE

MAE

MAPE

RMSE

MAE

MAPE

HA

136.97

48.26

31.55%

136.81

47.88

31.49%

135.72

46.40

30.80%

RF

66.63

34.37

24.09%

88.03

41.37

28.89%

143.5

59.15

52.91%

MLP

48.71

25.16

19.44%

51.80

26.15

20.38%

63.33

29.92

23.96%

LSTM

55.53

26.68

18.76%

57.37

27.25

19.04%

63.41

28.94

20.59%

GRU

52.04

25.91

18.87%

54.20

26.39

19.20%

59.91

28.08

21.03%

ASTGCN

66.49

32.29

21.90%

98.76

39.28

25.63%

154.95

51.33

32.35%

STG2Seq

47.19

24.98

23.26%

50.58

26.17

26.79%

56.81

28.22

34.30%

DCRNN

46.02

24.04

17.82%

49.90

25.23

18.35%

58.83

28.01

20.44%

GCRNN

46.09

24.26

18.06%

50.12

25.42

18.73%

58.67

28.18

21.07%

GWN

46.98

24.91

20.05%

51.64

26.53

20.38%

65.08

30.90

24.36%

PVCGN

44.97

23.29

16.83%

47.83

24.16

17.23%

55.27

26.29

18.69%

MGT

45.30

23.15

16.47%

46.80

23.45

16.53%

50.69

24.97

17.83%

ASC-GRU

51.68

25.13

18.66%

52.12

26.29

19.01%

56.02

27.86

20.76%

TSTA-GCN

42.58

22.63

17.24%

44.99

23.24

17.06%

48.54

24.52

17.97%