Table 4 Comparison of different methods for rush hours on the HZMetro dataset.

From: TSTA-GCN: trend spatio-temporal traffic flow prediction using adaptive graph convolution network

Time

15 min

30 min

60 min

Metric

RMSE

MAE

MAPE

RMSE

MAE

MAPE

RMSE

MAE

MAPE

HA

65.53

40.63

11.51%

67.89

42.08

11.58%

67.22

40.72

13.21%

RF

84.33

52.07

15.24%

108.25

65.97

17.56%

136.08

75.40

20.81%

MLP

57.39

35.77

10.96%

62.25

37.58

10.80%

61.81

36.13

12.16%

LSTM

57.10

35.77

9.99%

59.03

36.45

10.07%

57.35

34.19

11.23%

GRU

56.31

35.23

10.12%

58.81

36.59

10.10%

57.14

34.01

11.08%

ASTGCN

60.72

36.82

11.77%

58.30

35.48

12.15%

59.23

33.59

13.68%

STG2Seq

53.28

35.03

10.73%

56.26

36.96

10.95%

57.69

35.64

12.25%

DCRNN

54.17

35.08

10.37%

58.27

37.48

10.69%

59.52

36.27

11.94%

GCRNN

55.51

35.68

10.36%

57.34

37.31

10.54%

58.88

35.94

11.93%

GWN

56.98

37.19

10.84%

59.71

38.94

11.04%

59.96

37.49

12.35%

PVCGN

49.79

32.63

9.72%

51.63

33.30

9.52%

51.09

31.43

10.43%

MGT

49.36

31.98

9.23%

53.01

33.56

9.32%

53.21

32.49

10.66%

TSTA-GCN

47.79

31.12

8.97%

49.81

32.19

9.08%

50.63

31.28

10.27%