Table 7 Computational efficiency comparisons on the Hangzhou metro dataset.

From: TSTA-GCN: trend spatio-temporal traffic flow prediction using adaptive graph convolution network

Model

PVCGN

MGT

SARGCN

TSTA-GCN

Parameter amount

\(37.6\times 10^6\)

\(2.82\times 10^6\)

\(1.32\times 10^6\)

\(5.49\times 10^6\)

Average training time

22.8s/epoch

30.1s/epoch

11.2s/epoch

59.4s/epoch