Table 8 Comparison of the proposed work with recent literature.

From: Ensemble learning with explainable AI for improved heart disease prediction based on multiple datasets

Research work

Algorithms considered

Dataset used

Highest accuracy (%)

Precision (%)

Recall (%)

F1-score (%)

Specificity (%)

AUC/-ROC (%)

Negative predicted values (%)

MCC (%)

False-positive rate

False-negative rate

False discovery rate

Misclassification rate

Statistical analysis

XAI

Chandrasekhar and Peddakrishna [31]

Voting

HDDC and IDD

95 with IEEE Dataport

96.04

93.27

94.63

95

-

91.57

87.94

0.0500

0.0673

0.0396

0.0500

×

×

Tiwari et al. [32]

Stacking

IDD

92.34

92

93.49

92.74

91.07

92.28

93.49

84.64

0.0893

0.0651

0.0800

0.0766

×

×

Raza [33]

Voting

StatLog heart disease dataset

88.88

89

85

87

87

88

88

-

0.1300

0.1500

0.1000

0.1100

×

×

Mienye et al. [34]

Stacking

HDDC and FHSD

93 with FHSD

96

91

93

-

93.30

91

91

-

0.0900

0.0400

0.0700

×

×

Ambrews et al. [35]

Voting

FHSD and UHDD

91.96 with UHDD

92.40

91.72

91.69

90.77

-

91.72

-

0.0923

0.0828

0.0760

0.0804

×

×

Ashfaq [36]

Stacking

HDDC

87

83

83

83

-

83

83

83

-

0.0170

0.0170

0.0130

×

×

Habib and Tasnim [37]

Voting

FHSD

88.42

100

43

82

-

73

43

43

-

0.5700

0

0.1158

×

×

Mohapatra et al. [38]

Stacking

UHDD

91.8

92.6

92.6

92.6

90.9

91.7

92.6

83.5

0.0910

0.0740

0.0740

0.0820

×

×

Our paper

Stacking

HDDC

91

89.7

98.1

91.8

-

92

98.1

82.4

-

0.0190

0.0130

0.0888

√

√

UHDD

98

98.8

98.7

98.4

-

98

98.7

96.8

-

0.0130

0.0120

0.0167

 Â