Table 1 Comparison of performances on the NYU dataset.

From: A simple monocular depth estimation network for balancing complexity and accuracy

Method

Venue

Backbone

\(\delta _1\uparrow\)

\(\delta _2\uparrow\)

\(\delta _3\uparrow\)

AbsRel\(\downarrow\)

RMSE\(\downarrow\)

log10\(\downarrow\)

Params\(\downarrow\)

DORN17

CVPR 2018

ResNet-101

0.828

0.965

0.992

0.115

0.509

0.051

–

BTS58

Arxiv 2019

ResNext-101

0.885

0.978

0.994

0.110

0.392

0.047

47.0M

PWA59

AAAI 2021

DenseNet161

0.892

0.985

0.997

0.105

0.374

0.045

–

AdaBins12

CVPR 2021

EfficientNet-B5

0.903

0.984

0.997

0.103

0.364

0.044

78.0 M

P3Depth60

CVPR 2022

ResNet101

0.898

0.981

0.996

0.104

0.364

0.043

94.2M

NeWCRFs19

CVPR 2022

Swin-L

0.922

0.992

0.998

0.095

0.334

0.041

270.5M

LifelongDepth20

TNNLS 2023

ResNet-34

0.857

0.972

0.993

0.121

0.429

0.052

22.23M

DepthFormer61

MIR 2023

Swin-L+R-50-C1

0.923

0.989

0.997

0.094

0.329

0.040

273.0M

IEBins18

NeurIPS 2023

Swin-T

0.893

0.984

0.996

0.108

0.375

0.046

90.7M

TrapAttention62

CVPR 2023

XCiT-M24

0.925

0.988

0.997

0.092

0.332

0.040

94.2M

MDEUncertainty63

TCSVT 2024

Swin-L

0.879

0.977

0.994

0.112

0.420

0.048

–

ASNDepth22

TPAMI 2024

HRNet-18

0.906

0.985

0.997

0.101

0.377

0.044

–

Metric3Dv229

ECCV 2024

ConvNeXt-L

0.925

0.983

0.994

0.092

0.341

0.040

203.24M

SimMDE(Ours)

Ours

MSCAN-B

0.925

0.990

0.997

0.091

0.331

0.039

30.9M

  1. The reported numbers are from the corresponding original papers. Best results are marked bold. The second results are marked underlined.