Table 3 Quantitative results for zero-shot transfer to three unseen indoor datasets and one outdoor dataset.

From: A simple monocular depth estimation network for balancing complexity and accuracy

Method

SUN RGB-D

iBims-1 Benchmark

\(\delta _1\uparrow\)

AbsRel\(\downarrow\)

RMSE\(\downarrow\)

\(\delta _1\uparrow\)

AbsRel\(\downarrow\)

RMSE\(\downarrow\)

BTS58

0.740

0.172

0.515

0.538

0.231

0.919

AdaBins12

0.771

0.159

0.476

0.555

0.212

0.901

LocalBins66

0.797

0.151

0.424

0.548

0.206

0.861

NeWCRFs19

0.777

0.156

0.470

0.558

0.211

0.880

IEBins18

0.768

0.157

0.476

0.601

0.204

0.849

Ours

0.781

0.151

0.423

0.578

0.197

0.831

Method

DIODE Indoor

DIODE outdoor

\(\delta _1\uparrow\)

AbsRel\(\downarrow\)

RMSE\(\downarrow\)

\(\delta _1\uparrow\)

AbsRel\(\downarrow\)

RMSE\(\downarrow\)

BTS58

0.210

0.418

1.905

0.171

0.837

10.480

AdaBins12

0.174

0.443

1.963

0.161

0.863

10.350

LocalBins66

0.229

0.412

1.853

0.170

0.821

10.270

NeWCRFs19

0.187

0.404

1.867

0.168

0.759

9.228

IEBins18

0.231

0.387

1.787

0.128

0.685

9.360

Ours

0.270

0.366

1.717

0.188

0.711

8.691

  1. The best result is indicated in bold.