Table 8 Comparison with previous works based on the quantity of trainable parameters (Params), Gflops, and FPS.

From: A simple monocular depth estimation network for balancing complexity and accuracy

Method

NYU

KITTI

Resolution

Gflops\(\downarrow\)

FPS\(\uparrow\)

Params\(\downarrow\)

Resolution

Gflops\(\downarrow\)

FPS\(\uparrow\)

Params\(\downarrow\)

AdaBins12

\(416 \times 544\)

137.18

28.4

78.3M

\(352 \times 704\)

150.21

27.6

78.3M

NewCRFs19

\(480 \times 640\)

280.46

18.4

270.4M

\(352 \times 1120\)

361.13

14.7

270.4M

LifelongDepth20

\(480 \times 640\)

63.29

108.1

22.3M

\(352 \times 1120\)

81.22

98.1

22.3M

IEBins18

\(480 \times 640\)

377.91

16.2

90.7M

\(352 \times 1120\)

484.52

13.8

90.7M

Metric3Dv229

\(480 \times 640\)

263.04

20.6

203.24M

\(352 \times 1120\)

337.57

16.2

203.24M

SimMDE(Ours)

\(480 \times 640\)

42.79

28.8

30.9M

\(352 \times 704\)

46.85

30.8

30.9M

  1. The best result is indicated in bold.