Table 2 Performance evaluation of twelve prediction models.

From: Interpretable machine learning model for predicting post-hepatectomy liver failure in hepatocellular carcinoma

 

Model

AUC

Accuracy

Sensitivity

Specificity

F1

RF

Random Forest

1.000

1.000

1.000

1.000

1.000

ADA

Ada Boost Classifier

1.000

1.000

1.000

1.000

1.000

GBM

Gradient Boosting Machine

1.000

0.994

0.975

1.000

0.987

SVM

Support Vector Machine

0.999

0.971

0.888

1.000

0.940

KNN

K-Nearest Neighbor

0.999

0.961

0.863

0.996

0.920

XGBoost

eXtreme Gradient Boosting

0.983

0.933

0.775

0.987

0.855

MLP

Multi-Layer Perception

0.884

0.881

0.725

0.935

0.758

C5.0

C5.0

0.872

0.837

0.500

0.953

0.611

NB

Naive Bayes

0.861

0.821

0.388

0.970

0.525

NN

Neural Network

0.807

0.776

0.250

0.957

0.364

LR

Logistic Regression

0.805

0.763

0.313

0.918

0.403

GP

Gaussian Processes

0.804

0.776

0.200

0.974

0.314

  1. Significant values are in bold.
  2. AUC, area under curve.