Table 4 Implementation parameters and configuration for LeNet-5 model for criminal facial expression detection.

From: Criminal emotion detection framework using convolutional neural network for public safety

Parameter

Value

Dataset

Emo135 (subset of 2000 images)

Image size

48 \(\times\) 48 \(\times\) 3

Normalization

Pixel values scaled to [0, 1]

Train-Test split

80% Training, 20% Testing

Total classes

135 (based on unique emotion labels)

Model architecture

LeNet-5

1st Conv layer

6 filters, 5\(\times\)5 kernel, ReLU, stride (1,1)

1st MaxPooling

2\(\times\)2 pool size, stride (2,2)

2nd Conv layer

16 filters, 5\(\times\)5 kernel, ReLU, stride (1,1)

2nd MaxPooling

2\(\times\)2 pool size, stride (2,2)

Flatten Layer

Yes

Dense layer 1

120 units, ReLU

Dense layer 2

84 units, ReLU

Output layer

135 units (softmax activation)

Optimizer

RMSprop

Loss function

Categorical cross-entropy

Batch size

128

Epochs

50

Validation split

20% of data