Table 4 AVDL frequency domain evaluation.
Emotion | Model | Accuracy (%) | Precision (%) | Recall (%) | F1-score (%) | Standard deviation | Computational efficiency (s) |
---|---|---|---|---|---|---|---|
Arousal | SVM | 0.6060 | 0.6060 | 0.6060 | 0.6060 | 0.0194 | 1.2465 |
KNN | 0.6272 | 0.6272 | 0.6272 | 0.6272 | 0.0221 | 0.1389 | |
MLP | 0.5971 | 0.5971 | 0.5971 | 0.5971 | 0.0256 | 6.6987 | |
1D-CNN | 0.7072 | 0.7072 | 0.7072 | 0.7072 | 0.0368 | 0.1489 | |
GBM | 0.8213 | 0.8213 | 0.8213 | 0.8213 | 0.0314 | 0.0821 | |
EmoTrans | 0.8569 | 0.8569 | 0.8569 | 0.8569 | 0.0278 | 0.0636 | |
Valence | SVM | 0.5725 | 0.5725 | 0.5725 | 0.5725 | 0.0178 | 1.4950 |
KNN | 0.6016 | 0.6016 | 0.6016 | 0.6016 | 0.0335 | 0.0741 | |
MLP | 0.6027 | 0.6027 | 0.6027 | 0.6027 | 0.0287 | 8.7606 | |
1D-CNN | 0.7872 | 0.7872 | 0.7872 | 0.7872 | 0.0348 | 0.0936 | |
GBM | 0.8314 | 0.8314 | 0.8314 | 0.8314 | 0.0364 | 0.0791 | |
EmoTrans | 0.8769 | 0.8769 | 0.8769 | 0.8769 | 0.0428 | 0.4211 | |
Dominance | SVM | 0.6351 | 0.6351 | 0.6351 | 0.6351 | 0.0257 | 1.3081 |
KNN | 0.6261 | 0.6261 | 0.6261 | 0.6261 | 0.0245 | 0.0784 | |
MLP | 0.6262 | 0.6262 | 0.6262 | 0.6262 | 0.0196 | 8.1426 | |
1D-CNN | 0.7661 | 0.7661 | 0.7661 | 0.7661 | 0.0347 | 0.0674 | |
GBM | 0.8311 | 0.8311 | 0.8311 | 0.8311 | 0.0309 | 0.0781 | |
EmoTrans | 0.8962 | 0.8962 | 0.8962 | 0.8962 | 0.0196 | 0.2426 | |
Liking | SVM | 0.5681 | 0.5681 | 0.5681 | 0.5681 | 0.0397 | 1.3657 |
KNN | 0.6072 | 0.6072 | 0.6072 | 0.6072 | 0.0368 | 0.0736 | |
MLP | 0.5569 | 0.5569 | 0.5569 | 0.5569 | 0.0228 | 9.2211 | |
1D-CNN | 0.7961 | 0.7961 | 0.7961 | 0.7961 | 0.0245 | 0.0784 | |
GBM | 0.8304 | 0.8304 | 0.8304 | 0.8304 | 0.0281 | 0.0791 | |
EmoTrans | 0.8762 | 0.8762 | 0.8762 | 0.8762 | 0.0196 | 0.1326 |