Table 4 AVDL frequency domain evaluation.

From: EmoTrans attention based emotion recognition using EEG signals and facial analysis with expert validation

Emotion

Model

Accuracy (%)

Precision (%)

Recall (%)

F1-score (%)

Standard deviation

Computational efficiency (s)

Arousal

SVM

0.6060

0.6060

0.6060

0.6060

0.0194

1.2465

KNN

0.6272

0.6272

0.6272

0.6272

0.0221

0.1389

MLP

0.5971

0.5971

0.5971

0.5971

0.0256

6.6987

1D-CNN

0.7072

0.7072

0.7072

0.7072

0.0368

0.1489

GBM

0.8213

0.8213

0.8213

0.8213

0.0314

0.0821

EmoTrans

0.8569

0.8569

0.8569

0.8569

0.0278

0.0636

Valence

SVM

0.5725

0.5725

0.5725

0.5725

0.0178

1.4950

KNN

0.6016

0.6016

0.6016

0.6016

0.0335

0.0741

MLP

0.6027

0.6027

0.6027

0.6027

0.0287

8.7606

1D-CNN

0.7872

0.7872

0.7872

0.7872

0.0348

0.0936

GBM

0.8314

0.8314

0.8314

0.8314

0.0364

0.0791

EmoTrans

0.8769

0.8769

0.8769

0.8769

0.0428

0.4211

Dominance

SVM

0.6351

0.6351

0.6351

0.6351

0.0257

1.3081

KNN

0.6261

0.6261

0.6261

0.6261

0.0245

0.0784

MLP

0.6262

0.6262

0.6262

0.6262

0.0196

8.1426

1D-CNN

0.7661

0.7661

0.7661

0.7661

0.0347

0.0674

GBM

0.8311

0.8311

0.8311

0.8311

0.0309

0.0781

EmoTrans

0.8962

0.8962

0.8962

0.8962

0.0196

0.2426

Liking

SVM

0.5681

0.5681

0.5681

0.5681

0.0397

1.3657

KNN

0.6072

0.6072

0.6072

0.6072

0.0368

0.0736

MLP

0.5569

0.5569

0.5569

0.5569

0.0228

9.2211

1D-CNN

0.7961

0.7961

0.7961

0.7961

0.0245

0.0784

GBM

0.8304

0.8304

0.8304

0.8304

0.0281

0.0791

EmoTrans

0.8762

0.8762

0.8762

0.8762

0.0196

0.1326