Table 6 Wavelet domain evaluation results.

From: EmoTrans attention based emotion recognition using EEG signals and facial analysis with expert validation

Emotion

Model

Mean accuracy (%)

Precision (%)

Recall (%)

F1-score (%)

Standard deviation

Time taken (s)

Arousal

SVM

0.6094

0.6094

0.6094

0.6094

0.0326

3.4850

KNN

0.6049

0.6049

0.6049

0.6049

0.0258

0.1443

MLP

0.5971

0.5971

0.5971

0.5971

0.0250

12.9017

1D-CNN

0.8869

0.8869

0.8869

0.8869

0.7248

0.1765

GBM

0.8813

0.8813

0.8813

0.8813

0.8714

0.1824

EmoTrans

0.9045

0.9045

0.9045

0.9045

0.0425

0.0803

Valence

SVM

0.5815

0.5815

0.5815

0.5815

0.0327

3.7467

KNN

0.5703

0.5703

0.5703

0.5703

0.0271

0.0744

MLP

0.6016

0.6016

0.6016

0.6016

0.0149

12.2344

1D-CNN

0.8142

0.8142

0.8142

0.8142

0.0238

1.3745

GBM

0.8201

0.8201

0.8201

0.8201

0.0244

0.0724

EmoTrans

0.9312

0.9312

0.9312

0.9312

0.0525

0.0623

Dominance

SVM

0.6005

0.6005

0.6005

0.6005

0.0414

3.2241

KNN

0.6138

0.6138

0.6138

0.6138

0.0345

0.0699

MLP

0.6094

0.6094

0.6094

0.6094

0.0465

12.2588

1D-CNN

0.7932

0.7932

0.7932

0.7932

0.0128

0.2730

GBM

0.8032

0.8032

0.8032

0.8032

0.0278

0.4210

EmoTrans

0.9021

0.9021

0.9021

0.9021

0.0357

0.3743

Liking

SVM

0.5849

0.5849

0.5849

0.5849

0.0348

3.5765

KNN

0.5815

0.5815

0.5815

0.5815

0.0455

0.0703

MLP

0.5882

0.5882

0.5882

0.5882

0.0259

10.9442

1D-CNN

0.7934

0.7934

0.7934

0.7934

0.0218

0.5661

GBM

0.8013

0.8013

0.8013

0.8013

0.0214

0.7841

EmoTrans

0.9113

0.9113

0.9113

0.9113

0.0921

0.3523