Table 6 Wavelet domain evaluation results.
Emotion | Model | Mean accuracy (%) | Precision (%) | Recall (%) | F1-score (%) | Standard deviation | Time taken (s) |
---|---|---|---|---|---|---|---|
Arousal | SVM | 0.6094 | 0.6094 | 0.6094 | 0.6094 | 0.0326 | 3.4850 |
KNN | 0.6049 | 0.6049 | 0.6049 | 0.6049 | 0.0258 | 0.1443 | |
MLP | 0.5971 | 0.5971 | 0.5971 | 0.5971 | 0.0250 | 12.9017 | |
1D-CNN | 0.8869 | 0.8869 | 0.8869 | 0.8869 | 0.7248 | 0.1765 | |
GBM | 0.8813 | 0.8813 | 0.8813 | 0.8813 | 0.8714 | 0.1824 | |
EmoTrans | 0.9045 | 0.9045 | 0.9045 | 0.9045 | 0.0425 | 0.0803 | |
Valence | SVM | 0.5815 | 0.5815 | 0.5815 | 0.5815 | 0.0327 | 3.7467 |
KNN | 0.5703 | 0.5703 | 0.5703 | 0.5703 | 0.0271 | 0.0744 | |
MLP | 0.6016 | 0.6016 | 0.6016 | 0.6016 | 0.0149 | 12.2344 | |
1D-CNN | 0.8142 | 0.8142 | 0.8142 | 0.8142 | 0.0238 | 1.3745 | |
GBM | 0.8201 | 0.8201 | 0.8201 | 0.8201 | 0.0244 | 0.0724 | |
EmoTrans | 0.9312 | 0.9312 | 0.9312 | 0.9312 | 0.0525 | 0.0623 | |
Dominance | SVM | 0.6005 | 0.6005 | 0.6005 | 0.6005 | 0.0414 | 3.2241 |
KNN | 0.6138 | 0.6138 | 0.6138 | 0.6138 | 0.0345 | 0.0699 | |
MLP | 0.6094 | 0.6094 | 0.6094 | 0.6094 | 0.0465 | 12.2588 | |
1D-CNN | 0.7932 | 0.7932 | 0.7932 | 0.7932 | 0.0128 | 0.2730 | |
GBM | 0.8032 | 0.8032 | 0.8032 | 0.8032 | 0.0278 | 0.4210 | |
EmoTrans | 0.9021 | 0.9021 | 0.9021 | 0.9021 | 0.0357 | 0.3743 | |
Liking | SVM | 0.5849 | 0.5849 | 0.5849 | 0.5849 | 0.0348 | 3.5765 |
KNN | 0.5815 | 0.5815 | 0.5815 | 0.5815 | 0.0455 | 0.0703 | |
MLP | 0.5882 | 0.5882 | 0.5882 | 0.5882 | 0.0259 | 10.9442 | |
1D-CNN | 0.7934 | 0.7934 | 0.7934 | 0.7934 | 0.0218 | 0.5661 | |
GBM | 0.8013 | 0.8013 | 0.8013 | 0.8013 | 0.0214 | 0.7841 | |
EmoTrans | 0.9113 | 0.9113 | 0.9113 | 0.9113 | 0.0921 | 0.3523 |