Table 4 Performance comparison of different models on the FB15K-237 and WN18RR datasets with m=60%.
From: An enhanced framework for knowledge graph embedding based on negative sample analogical reasoning
Model | FB15K-237 | WN18RR | ||||||
---|---|---|---|---|---|---|---|---|
MRR | Hit@1 | Hit@3 | Hit@10 | MRR | Hit@1 | Hit@3 | Hit@10 | |
TransE7 | 0.329 | 0.230 | 0.368 | 0.526 | 0.223 | 0.014 | 0.401 | 0.530 |
RotatE9 | 0.337 | 0.241 | 0.374 | 0.531 | 0.473 | 0.427 | 0.495 | 0.568 |
ANALOGY20 | 0.256 | 0.165 | 0.290 | 0.436 | 0.405 | 0.363 | 0.429 | 0.474 |
HAKE10 | 0.349 | 0.252 | 0.385 | 0.545 | 0.496 | 0.452 | 0.513 | 0.580 |
Rot-Pro36 | 0.344 | 0.246 | 0.383 | 0.540 | 0.457 | 0.397 | 0.482 | 0.577 |
PairRE24 | 0.348 | 0.254 | 0.384 | 0.539 | 0.455 | 0.413 | 0.469 | 0.539 |
DualE27 | 0.365 | 0.268 | 0.400 | 0.559 | 0.492 | 0.444 | 0.513 | 0.584 |
CompGCN32 | 0.355 | 0.264 | 0.390 | 0.535 | 0.479 | 0.443 | 0.494 | 0.546 |
SE-GNN33 | 0.365 | 0.271 | 0.399 | 0.549 | 0.484 | 0.446 | 0.509 | 0.572 |
KBGAT17 | 0.365 | 0.268 | 0.400 | 0.559 | 0.492 | 0.444 | 0.513 | 0.584 |
PUDA18 | 0.369 | 0.268 | 0.408 | 0.578 | 0.481 | 0.436 | 0.498 | 0.582 |
REP19 | 0.354 | 0.262 | 0.388 | 0.540 | 0.488 | 0.439 | 0.505 | 0.588 |
AnKGE20 | 0.385 | 0.288 | 0.428 | 0.572 | 0.500 | 0.454 | 0.515 | 0.587 |
Ne_AnKGE (Ours) | 0.394 | 0.286 | 0.443 | 0.606 | 0.505 | 0.455 | 0.526 | 0.603 |