Table 2 Model efficiency assessment: evaluation metric scores.
ML models | Accuracy | Log loss | Precision | Recall | RocAuc | Specificity | F1-score | TPR | FPR |
---|---|---|---|---|---|---|---|---|---|
XG boost | 0.963 | 0.139 | 0.95 | 0.964 | 0.985 | 0.962 | 0.957 | 0.964 | 0.038 |
Logistic regression | 0.739 | 0.553 | 0.737 | 0.609 | 0.193 | 0.837 | 0.667 | 0.609 | 0.163 |
Random forest | 0.773 | 0.555 | 0.815 | 0.609 | 0.099 | 0.897 | 0.697 | 0.609 | 0.103 |
AdaBoost | 0.866 | 0.666 | 0.847 | 0.840 | 0.060 | 0.886 | 0.844 | 0.840 | 0.114 |
SupportVector machine | 0.866 | 0.661 | 0.874 | 0.804 | 0.115 | 0.913 | 0.838 | 0.804 | 0.087 |