Table 2 Performance comparison of DeEPsnap, DNN, DeepHE, SVM, RF, Adaboost, and GAT.

From: A deep ensemble framework for human essential gene prediction by integrating multi-omics data

Method

AUROC

AUPRC

MCC

F1

Accuracy

DeEPsnap

0.9616 \({\pm }\) 0.0059

0.9383 \({\pm }\) 0.0083

0.7592 \({\pm }\) 0.0186

0.8062 \({\pm }\) 0.0149

0.9236 \({\pm }\) 0.0059

DNN

0.9511 \({\pm }\) 0.0062

0.9232 \({\pm }\) 0.0088

0.7329 \({\pm }\) 0.0190

0.7850 \({\pm }\) 0.0157

0.9152 \({\pm }\) 0.0062

DeepHE

0.9355 \({\pm }\) 0.0072

0.8953 \({\pm }\) 0.0148

0.6860 \({\pm }\) 0.0295

0.7467 \({\pm }\) 0.0246

0.9016 \({\pm }\) 0.0105

SVM

0.9562 \({\pm }\) 0.0097

0.8527 \({\pm }\) 0.0249

0.7371 \({\pm }\) 0.0358

0.7887 \({\pm }\) 0.0285

0.9123 \({\pm }\) 0.012

RF

0.9502 \({\pm }\) 0.0092

0.8532 \({\pm }\) 0.0206

0.6899 \({\pm }\) 0.0272

0.7268 \({\pm }\) 0.0239

0.9103 \({\pm }\) 0.0072

Adaboost

0.9460 \({\pm }\) 0.0078

0.8428 \({\pm }\) 0.0219

0.7040 \({\pm }\) 0.0243

0.7582 \({\pm }\) 0.0196

0.9102 \({\pm }\) 0.0076

GAT

0.9171 \({\pm }\) 0.0216

0.8554 \({\pm }\) 0.0360

0.6681 \({\pm }\) 0.1099

0.6568 \({\pm }\) 0.1255

0.8710 \({\pm }\) 0.0217