Table 3 Performance comparison of DeEPsnap with different types of features. S: sequence features; N: network embedding features; G: gene ontology features; C: protein complex features; D: protein domain features.

From: A deep ensemble framework for human essential gene prediction by integrating multi-omics data

Features

AUROC

AUPRC

MCC

F1

Accuracy

S+N+G+C+D

0.9616 \({\pm }\) 0.0059

0.9383 \({\pm }\) 0.0083

0.7592 \({\pm }\) 0.0186

0.8062 \({\pm }\) 0.0149

0.9236 \({\pm }\) 0.0059

S+N+G+C

0.9548 \({\pm }\) 0.0070

0.9302 \({\pm }\) 0.0085

0.7403 \({\pm }\) 0.0169

0.7915 \({\pm }\) 0.0135

0.9166 \({\pm }\) 0.0053

S+N+G+D

0.9582 \({\pm }\) 0.0082

0.9319 \({\pm }\) 0.0119

0.7509 \({\pm }\) 0.0326

0.8000 \({\pm }\) 0.0260

0.9190 \({\pm }\) 0.0106

S+N+C+D

0.9587 \({\pm }\) 0.0082

0.9330 \({\pm }\) 0.0139

0.7402 \({\pm }\) 0.0361

0.7913 \({\pm }\) 0.0287

0.9161 \({\pm }\) 0.0120

S+G+C+D

0.9590 \({\pm }\) 0.0077

0.9343 \({\pm }\) 0.0103

0.7352 \({\pm }\) 0.0234

0.7873 \({\pm }\) 0.0185

0.9117 \({\pm }\) 0.0086

N+G+C+D

0.9354 \({\pm }\) 0.0083

0.9019 \({\pm }\) 0.0094

0.6863 \({\pm }\) 0.0228

0.7477 \({\pm }\) 0.0183

0.9003 \({\pm }\) 0.0075