Table 5 Comparison experiments of different models on the VisDrone dataset.(CF-YOLO is an enhanced version based on YOLOv11n).

From: CF-YOLO for small target detection in drone imagery based on YOLOv11 algorithm

Model

P

R

F1

mAP50

mAP50:95

Para(M)

GFLOPs

YOLOv3-tiny

39.1

24.3

22.5

23.6

13.2

14.3

9.52

YOLOv5n

44.5

33.2

38.0

32.9

19.1

5.8

2.18

YOLOv5s

51.1

38.1

43.7

39.3

23.4

18.8

7.81

YOLOv5l

50.7

38.6

43.9

41.4

24.6

107.8

46.15

YOLOv6s

40.3

30.5

30.2

17.7

11.5

4.15

YOLOv7-tiny

47.6

37.3

41.8

35.8

18.8

13.3

6.04

YOLOv8n

45

33

38.1

33.1

19.2

6.8

2.68

YOLOv8s

50.7

37.9

43.3

39.1

23.4

23.

49.83

YOLOv8m

53.3

41.1

46.4

42.5

26

67.5

23.2

YOLOv9s

52

38

43.9

39.4

23.8

22.1

61.9

YOLOv10n

45.0

34.5

39.1

34.5

19.9

6.5

2.26

YOLOv10s

52.7

38

44.0

39.8

23.8

21.4

7.22

YOLOv10m

55.1

42.1

47.7

44.2

26.9

58.9

15.31

YOLOv11n

42.8

33.1

37.3

32.2

18.6

6.3

2.58

YOLOv11s

49.9

38.7

43.5

39.4

23.6

21.3

9.41

YOLOv11m

55.7

42.5

48.2

44.1

27.2

67.7

20.03

RT-DETR(r18)

57.2

40

47.1

41.4

25.1

57

20

EL-YOLO39

48.8

40.3

43

42.9

24.8

6.7

1.08

EBC-YOLO56

55.3

42.0

47.7

44.3

26.7

35.5

10.2

YOLOv8-QSD15

44.2

34.2

38.6

34.6

16.8

EdgeYOLO57

44.8

26.4

40.5

Drone-YOLO58

42.8

25.6

5.35

CF-YOLO

52.8

43.4

47.7

44.9

27.5

23.9

3.77