Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Simultaneous electrochemical detection of imipenem and meropenem using a Pt–Au bimetallic nanoparticle–decorated 3D graphene oxide modified glassy carbon electrode
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Simultaneous electrochemical detection of imipenem and meropenem using a Pt–Au bimetallic nanoparticle–decorated 3D graphene oxide modified glassy carbon electrode

  • Hossein Jamali Paghaleh1,
  • Shohreh Jahani2,
  • Mehran Moradalizadeh1 &
  • …
  • Mohammad Mehdi Foroughi1 

Scientific Reports , Article number:  (2026) Cite this article

  • 278 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Materials science
  • Nanoscience and technology

Abstract

The goal of this study was to create a low-cost, simultaneous, and sensitive electrochemical sensor for detecting the imipenem and meropenem. In order to determine them simultaneously, the first electrochemical sensor was created by combining a glassy carbon electrode (GCE) with a nanocomposite made of platinum-gold bimetallic nanoparticle-decorated three-dimensional graphene oxide (Pt-Au Bm-NPs/3D GO). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to evaluate the surface of Pt-Au Bm-NPs/3D GO/GCE. imipenem’s electrochemical signals increased as a result of the improvement of many sensitivity-affecting factors, including pH, electrode composition, and scan rate. The analysis of the CV data revealed that imipenem’s and meropenem’s redox were completely irreversible reactions. Chronoamperometry was utilized to ascertain the imipenem’s and meropenem’s diffusion coefficients (1.25 ± 0.02 × 10− 5 cm2s− 1 and 5.24 ± 0.02 × 10− 5 cm2s− 1, respectively). The imipenem and meropenem linear dynamic ranges were 0.001–800.0 µM with detection limits of 0.18 nM and 0.14 nM, respectively. Additionally, for the electrochemical oxidation of imipenem and meropenem, the DPV findings revealed two well-resolved anodic waves with a peak separation of around 230 mV, allowing for the simultaneous identification of both chemicals. It is very appropriate for detecting imipenem and meropenem in real samples because to its high sensitivity, low detection limit (nanomolar), remarkable repeatability, and ease of manufacture and renewal of the electrode.

Similar content being viewed by others

Fabrication of impedimetric sensor based on metallic nanoparticle for the determination of mesna anticancer drug

Article Open access 14 July 2023

Modification of a pencil graphite electrode with halloysite and gold–palladium bimetallic nanoparticles for diclofenac sodium determination

Article Open access 06 July 2025

A novel gallium oxide nanoparticles-based sensor for the simultaneous electrochemical detection of Pb2+, Cd2+ and Hg2+ ions in real water samples

Article Open access 23 November 2022

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

  1. Li, X. et al. A 6-year study of complicated urinary tract infections in Southern china: prevalence, antibiotic resistance, clinical and economic outcomes. Ther. Clin. Risk Manag. 13, 1479–1487 (2017).

    Google Scholar 

  2. Papp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. Carbapenems: past, present, and future, antimicrob. Agents Chemother. 55, 4943–4960 (2011).

    Google Scholar 

  3. Hashizume, T., Ishino, F., Nakagawa, J., Tamaki, S. & Matsuhashi, M. Studies on the mechanism of action of Imipenem (N-formimidoylthienamycin) in vitro: binding to the penicillin-binding proteins (PBPs) in Escherichia coli and Pseudomonas aeruginosa, and Inhibition of enzyme activities due to the PBPs in E. coli. J. Antibiot. (Tokyo). 37, 394–400 (1984).

    Google Scholar 

  4. Gadallah, M. I., Ali, H. R. H., Askal, H. F. & Saleh, G. A. Development of terbium based sensor for determination of Imipenem in dosage forms and real samples. J. Mol. Liq. 276, 705–713 (2019).

    Google Scholar 

  5. Wang, J., Chen, Y. & Zou, Q. Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model. PLoS Genet. 19, e1010942 (2023).

    Google Scholar 

  6. Roberts, J. A. et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 58, 1072–1083 (2014).

    Google Scholar 

  7. Roberts, J. A. et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect. Dis. 14, 498–509 (2014).

    Google Scholar 

  8. Jin, Y., Sun, Z. & Gu, A. Z. Proteomics technologies in toxicity screening: a review. Environ. Chem. Lett. 23, 67–80 (2025).

    Google Scholar 

  9. Legrand, T. et al. Simultaneous determination of three carbapenem antibiotics in plasma by HPLC with ultraviolet detection. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 875, 551–556 (2008).

    Google Scholar 

  10. Sun, H. K., Kuti, J. L. & Nicolau, D. P. Pharmacodynamics of antimicrobials for the empirical treatment of nosocomial pneumonia: a report from the OPTAMA Program, Crit. Care Med. 33, 2222–2227 (2005).

    Google Scholar 

  11. Zou, L. et al. A novel reversed-phase high-performance liquid chromatographic assay for the simultaneous determination of Imipenem and meropenem in human plasma and its application in TDM. J. Pharm. Biomed. Anal. 169, 142–150 (2019).

    Google Scholar 

  12. Xue, B. et al. Genotoxicity assessment of haloacetaldehyde disinfection byproducts via a simplified yeast-based toxicogenomics assay. Environ. Sci. Technol. 57, 16823–16833 (2023).

    Google Scholar 

  13. Zhanel, G. G., Simor, A. E., Vercaigne, L. & Mandell, L. Imipenem and meropenem: comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can. J. Infect. Dis. 9, 215–228 (1998).

    Google Scholar 

  14. Wang, Y., Zhai, Y., Ding, Y. & Zou, Q. SBSM-Pro: support bio-sequence machine for proteins. Sci. Chin. Inf. Sci. 67, 144–159 (2024).

    Google Scholar 

  15. Schuler, D. Safety and efficacy of meropenem in hospitalised children: randomised comparison with cefotaxime, alone and combined with metronidazole or amikacin. Meropenem paediatric study group. J. Antimicrob. Chemother. 36, 99–108 (1995). (Suppl. A).

    Google Scholar 

  16. Norrby, S. R., Newell, P. A., Faulkner, K. L. & Lesky, W. Safety profile of meropenem:international clinical experience based on the first 3125 patients treated with meropenem. J. Antimicrob. Chemother. 36, 207–223 (1995). (Suppl A).

    Google Scholar 

  17. Bhattacharyya, S., Darby, R. R., Raibagkar, P., Gonzalez Castro, L. N. & Berkowitz, A. L. Antibiotic-associated encephalopathy. Neurology 86, 963–971 (2016).

    Google Scholar 

  18. Wang, Y. et al. Identification of human microRNA-disease association via low-rank approximation-based link propagation and multiple kernel learning. Front. Comput. Sci. 18, 182903 (2024).

    Google Scholar 

  19. Wang, C., Calandra, G. B., Aziz, M. A. & Brown, K. R. Efficacy and safety of imipenem/cilastatin: a review of worldwide clinical experience. Rev. Infect. Dis. 7 (Suppl. 3), S528–S536 (1985).

    Google Scholar 

  20. Edwards, S. J., Emmas, C. E. & Campbell, H. E. Systematic review comparing meropenem with Imipenem plus Cilastatin in the treatment of severe infections. Curr. Med. Res. Opin. 21, 785–794 (2005).

    Google Scholar 

  21. Zhang, C. et al. Mechanism for the formation of natural fractures and their effects on shale oil accumulation in Junggar Basin, NW China. Int. J. Coal Geol. 254, 103973 (2022).

    Google Scholar 

  22. Zou, L., Yin, T., Huang, S. Q. & Zhu, Y. Occurrence of hepatic dysfunction and influencing factors among preadult inpatients treated with imipenem-cilastatin sodium. Adverse Drug React. J. 19, 353–358 (2017).

    Google Scholar 

  23. Dailly, E., Bouquie, R., Deslandes, G., Jolliet, P. & Le Floch, R. A liquid chromatography assay for a quantification of doripenem, ertapenem, imipenem, meropenem concentrations in human plasma: application to a clinical Pharmacokinetic study. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 879, 1137–1142 (2011).

    Google Scholar 

  24. Yang, Y. et al. Effectiveness of Omadacycline in a patient with chlamydia psittaci and KPC-Producing Gram-Negative bacteria infection. Infect. Drug Resist. 18, 903–908 (2025).

    Google Scholar 

  25. Bukkitgar, S. D. et al. Functional nanostructured metal oxides and its hybrid electrodes – Recent advancements in electrochemical biosensing applications. Microchem J. 159, 105522 (2020).

    Google Scholar 

  26. Wu, J. et al. A cost-effective and sensitive voltammetric sensor for determination of Baicalein in herbal medicine based on shuttle-shape α-Fe2O3 nanoparticle decorated multi-walled carbon nanotubes. Colloids Surf. A. 717, 136850 (2025).

    Google Scholar 

  27. Ghasemi, L., Jahani, S., Ghazizadeh, M. & Foroughi, M. M. Simultaneous determination of amitriptyline and Venlafaxine using a novel voltammetric sensor of carbon paste electrode modified with octahedral Pd2+-doped Co3O4 composite. Mater. Chem. Phys. 296, 127176 (2023).

    Google Scholar 

  28. Zhuang, H. H. et al. Efficacy and mortality of ceftazidime/avibactam-based regimens in carbapenem-resistant Gram-negative bacteria infections: A retrospective multicenter observational study. J. Infect. Public. Health. 16, 938–947 (2023).

    Google Scholar 

  29. Jafari, S., Pourmortazavi, S. M., Ehsani, A. & Mirsadeghi, S. CuO-ZIF-8 modified electrode surface as a new electrochemical sensing platform for detection of free Chlorine in aqueous solution. Sci. Rep. 14, 18961 (2024).

    Google Scholar 

  30. Li, D. et al. Artificial intelligence-assisted colorimetric sensor array based on supramolecular self-assembled nanozymes for visual monitoring of pesticide residues. Sens. Actuators B. 444, 138493 (2025).

    Google Scholar 

  31. Razavi, R., Amiri, M., Divsalar, K. & Foroumadi, A. CuONPs/MWCNTs/carbon paste modified electrode for determination of tramadol: theoretical and experimental investigation. Sci. Rep. 13, 7999 (2023).

    Google Scholar 

  32. Du, B. et al. Ultrasensitive optoelectronic biosensor arrays based on twisted bilayer graphene superlattice. Natl. Sci. Rev. 12, nwaf 357. (2025).

  33. Foroughi, M. M., Jahani, S. & Rashidi, S. Simultaneous detection of ascorbic acid, dopamine, acetaminophen and Tryptophan using a screen-printed electrode modified with woolen ball-shaped La3+/TiO2 nanostructure as a quadruplet nanosensor. Microchem J. 198, 110156 (2024).

    Google Scholar 

  34. Chen, Z. et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl. Sci. Rev. 9, nwac104 (2022).

    Google Scholar 

  35. Hajmalek, S., Jahani, S. & Foroughi, M. M. Simultaneous voltammetric determination of Tramadol and Paracetamol exploiting glassy carbon electrode modified with FeNi3 Nanoalloy in biological and pharmaceutical media. ChemstrySelect 6, 8797–8808 (2021).

    Google Scholar 

  36. Kumar Singh, A. & Xu, Q. Synergistic catalysis over bimetallic alloy nanoparticles. Chem. Cat. Chem. 5, 652–676 (2013).

  37. He, W. et al. AuPt alloy nanostructures with tunable composition and Enzyme-like activities for colorimetric detection of bisulfide. Sci. Rep. 7, 40103 (2017).

    Google Scholar 

  38. Hana, T., Zhanga, Y., Xua, C. J., Donga, J. & Liu, C. C. Monodisperse aum (M = Pd, Rh, Pt) bimetallic nanocrystals for enhanced electrochemical detection of H2O2, Sens. Actuators B. 207, 404–412 (2015).

    Google Scholar 

  39. Zhou, J. et al. One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme- free electrochemical sensor. Electrochim. Acta. 250, 152–158 (2017).

    Google Scholar 

  40. Shetti, N. P. et al. Electrooxidation and determination of flufenamic acid at graphene oxide modified carbon electrode. Surf. Interfac. 9, 107–113 (2017).

    Google Scholar 

  41. Cui, M., Huang, J., Wang, Y., Wu, Y. & Luo, X. Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene–carbon nanotube composites. Biosens. Bioelectron. 68, 563–569 (2015).

    Google Scholar 

  42. Ilager, D., Shetti, N. P., Foucaud, Y., Badawi, M. & Aminabhavi, T. M. Graphene/g-carbon nitride (GO/g-C3N4) nanohybrids as a sensor material for the detection of Methyl parathion and carbendazim. Chemosphere 292, 133450 (2022).

    Google Scholar 

  43. Bukkitgar, S. D. et al. Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. J. Mol. Liq. 300, 112368 (2020).

    Google Scholar 

  44. Li, H., Liu, L. & Yang, F. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup. J. Mater. Chem. A. 1, 3446–3453 (2013).

    Google Scholar 

  45. Wu, Z. S. et al. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134, 19532–19535 (2012).

    Google Scholar 

  46. Hummers, W. S. Jr. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Google Scholar 

  47. Zhang, S. et al. Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation. Chem. Mater. 23, 1079–1081 (2011).

    Google Scholar 

  48. Xu, J., Zhao, T., Liang, Z. & Zhu, L. Facile Preparation of AuPt alloy nanoparticles from organometallic complex precursor. Chem. Mater. 20, 1688–1690 (2008).

    Google Scholar 

  49. Li, J., Tang, W., Huang, J., Jin, J. & Ma, J. Polyethyleneimine decorated graphene oxide-supported Ni1-xFex bimetallic nanoparticles as efficient and robust electrocatalysts for hydrazine fuel cells. Catal. Sci. Technol. 3, 3155–3162 (2013).

    Google Scholar 

  50. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications second edn (Wiley, 2001).

  51. Shetti, N. P. et al. Electrochemical behavior of flufenamic acid at amberlite XAD-4 resin and silver-doped titanium dioxide/amberlite XAD-4 resin modified carbon electrodes. Colloids Surf. 177, 407–415 (2019).

    Google Scholar 

  52. Bukkitgar, S. D., Shetti, N. P. & Kulkarni, R. M. Construction of nanoparticles composite sensor for Atorvastatin and its determination in pharmaceutical and urine samples. Sens. Actuators B. 255, 1462–1470 (2018).

    Google Scholar 

  53. Jhankal, K. K. & Sharma, D. K. Electrochemical studies of meropenem at glassy carbon electrode and its direct determination in human plasma by square wave anodic adsorptive stripping voltammetry. Chem. Sci. Trans. 5, 1008–1018 (2016).

    Google Scholar 

  54. Hilali, A., Carlos Jiménez, J., Callejón, M., Angel Bello, M. & Guiraúm, A. Electrochemical study of imipenem’s primary metabolite at the mercury electrode. Voltammetric determination in urine. J. Pharm. Biomed. Anal. 15, 768–775 (2005).

    Google Scholar 

  55. Lima Silva, F. W. et al. Henrique Cincotto, Development of a portable and sustainable electrochemical sensor using sludge biochar/graphite conductive ink for the determination of imipenem in environmental samples. J. Environ. Chem. Eng. 13, 118774 (2025).

  56. Attia, A. K., Al-Ghobashy, M. A., El-Sayed, G. M. & Kamal, S. M. Voltammetric monitoring of linezolid, meropenem and Theophylline in plasma. Anal. Biochem. 545, 54–64 (2018).

    Google Scholar 

  57. Sivaprasad, M., Swarupa, C., Dhananjayulu, M., Jayapal, M. R. & Sreedhar, N. Y. Graphene and polyaniline composite modified glassy carbon electrode for electrochemical determination of doripenem and meropenem metabolites. J. Anal. Bioanal Tech. 5, 1000192 (2014).

    Google Scholar 

  58. Atta, N. F., Galal, A. & El-Gohary, A. R. M. Novel designed electrochemical sensor for simultaneous determination of linezolid and meropenem pneumonia drugs. J. Electroanal. Chem. 902, 115814 (2021).

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support by Islamic Azad University (Kerman Branch).

Author information

Authors and Affiliations

  1. Department of Chemistry, Ke.C., Islamic Azad University, Kerman, Iran

    Hossein Jamali Paghaleh, Mehran Moradalizadeh & Mohammad Mehdi Foroughi

  2. Bam University of Medical Sciences, Bam, Iran

    Shohreh Jahani

Authors
  1. Hossein Jamali Paghaleh
    View author publications

    Search author on:PubMed Google Scholar

  2. Shohreh Jahani
    View author publications

    Search author on:PubMed Google Scholar

  3. Mehran Moradalizadeh
    View author publications

    Search author on:PubMed Google Scholar

  4. Mohammad Mehdi Foroughi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Hossein Jamali Paghaleh: Investigation, Formal analysis, Writing – review & editing. Shohreh Jahani: Methodology, Project administration, Writing – original draft. Mehran Moradalizadeh: Validation, Writing – review & editing. Mohammad Mehdi Foroughi: Writing – original draft, Conceptualization, Supervision.

Corresponding author

Correspondence to Mohammad Mehdi Foroughi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paghaleh, H.J., Jahani, S., Moradalizadeh, M. et al. Simultaneous electrochemical detection of imipenem and meropenem using a Pt–Au bimetallic nanoparticle–decorated 3D graphene oxide modified glassy carbon electrode. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36658-0

Download citation

  • Received: 07 September 2025

  • Accepted: 14 January 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-36658-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Meropenem
  • Imipenem
  • Carbapenem-type antibiotic
  • Sensor
  • Voltammetry.
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing