Abstract
Antimicrobial resistance motivates antibacterial agents with multi-target mechanisms. We evaluated Moroccan rosemary essential oil (ROEO) against four pathogens (Escherichia coli, Citrobacter freundii, Staphylococcus aureus, Enterococcus faecalis) by disk diffusion and broth microdilution. ROEO inhibited all strains (zones 11.3–21.0 mm); activity was bactericidal for E. faecalis (MBC/MIC = 2.0) and bacteriostatic for others (MBC/MIC > 4). Bioassay-guided silica chromatography, using E. faecalis as the pre-specified indicator, localised activity to a polar fraction (F8; 18.5% of the oil; 14.0 ± 1.71 mm). GC–MS showed F8 was enriched in oxygenated monoterpenes (97.45%): myrtenol, verbenone, p-cymen-8-ol, γ-terpinen-7-al, carvone, β-thujone. Docking (AutoDock Vina) predicted binding of major constituents to essential enzymes (tyrosyl-tRNA synthetase, L-methionine γ-lyase, DNA gyrase B, and NAD⁺-dependent DNA ligase); native-ligand redocking reproduced crystallographic poses (RMSD ≤ 2.0 Å). In silico ADMET supported drug-like properties with high intestinal absorption and class-typical CNS-penetration and skin-sensitisation alerts. ROEO’s antibacterial profile is underpinned by an oxygenated-monoterpene fraction and yields testable hypotheses for enzyme validation, synergy studies, and in vivo efficacy and safety.
Similar content being viewed by others
Data availability
All data generated or analysed during this study are included in this published article and its supplementary information file.
References
Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0 (2022).
O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. (2016).
CDC. Antibiotic resistance threats in the United States. (2019).
Organization, W. H. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 (World Health Organization, 2022).
Jabeen, I., Islam, S., Hassan, A. K. M. I., Tasnim, Z. & Shuvo, S. R. A brief insight into citrobacter species - a growing threat to public health. Front. Antibiot. 2–2023. https://doi.org/10.3389/frabi.2023.1276982 (2023).
Prevention, E. C. & f., D. & Control. Assessing the health burden of infections with antibiotic-resistant bacteria in the EU/EEA, 2016–2020. Stockholm: ECDC (2022).
Zainab et al. Novel Polyhydroquinoline-Hydrazide-Linked Schiff’s Base Derivatives: Multistep Synthesis, Antimicrobial, and Calcium-Channel-Blocking Activities. Antibiotics 11 (2022). https://doi.org/10.3390/antibiotics11111568
Shahab, N. et al. Hydrazone–Schiff base derivatives bearing a polyhydroquinoline scaffold as potent antimicrobial agents: in Vitro, molecular Docking and DFT insights. J. Comput. Biophys. Chem. 25, 685–702. https://doi.org/10.1142/S2737416525500632 (2025).
Cherrate, M. et al. Acinos Alpinus and Ziziphora hispanica: phenolic Profile, antioxidant and antibacterial properties of hydromethanolic extracts from aerial parts. Moroccan J. Chem. 12, 594–613. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i2.44010 (2024).
Visan, A. I. & Negut, I. Coatings based on essential oils for combating antibiotic resistance. Antibiotics 13 https://doi.org/10.3390/antibiotics13070625 (2024).
Nieto, G., Ros, G. & Castillo, J. Antioxidant and antimicrobial properties of Rosemary (Rosmarinus officinalis, L.): A review. Medicines 5 https://doi.org/10.3390/medicines5030098 (2018).
Lahlou, Y., Moujabbir, S., Aboukhalaf, A., El Amraoui, B. & Bamhaoud, T. Antibacterial activity of essential oils of salvia officinalis growing in Morocco. Roczniki Państwowego Zakładu Higieny. 74 https://doi.org/10.32394/rpzh.2023.0275 (2023).
Zochedh, A., Priya, M., Shunmuganarayanan, A., Thandavarayan, K. & Sultan, A. B. Investigation on structural, spectroscopic, DFT, biological activity and molecular Docking simulation of essential oil Gamma-Terpinene. J. Mol. Struct. 1268, 133651. https://doi.org/10.1016/j.molstruc.2022.133651 (2022).
Frisch, M. Gaussian 09, revision d. 01, Gaussian. Inc Wallingford CT 201 (2009).
Salah, M. et al. Theoretical study of the 1, 3-DC reaction between fluorinated alkynes and azides: reactivity indices, transition structures, IGM and ELF analysis. J. Mol. Graph. Model. 94, 107458. https://doi.org/10.1016/j.jmgm.2019.107458 (2020).
Mutahir, S. et al. Investigations of electronic, structural, and in Silico anticancer potential of persuasive phytoestrogenic isoflavene-based Mannich bases. Molecules 28, 5911. https://doi.org/10.3390/molecules28155911 (2023).
Rezvan, V. H. & Molecular structure HOMO–LUMO, and NLO studies of some Quinoxaline 1, 4-dioxide derivatives: computational (HF and DFT) analysis. Results Chem. 7, 101437. https://doi.org/10.1016/j.rechem.2024.101437 (2024).
Domingo, L. R. & Pérez, P. Global and local reactivity indices for electrophilic/nucleophilic free radicals. Org. Biomol. Chem. 11, 4350–4358. https://doi.org/10.1039/C3OB40337H (2013). https://doi.org:.
Akman, F. et al. Molecular structure, electronic properties, reactivity (ELF, LOL, and Fukui), and NCI-RDG studies of the binary mixture of water and essential oil of phlomis Bruguieri. Molecules 28, 2684. https://doi.org/10.3390/molecules28062684 (2023).
Suresh, C. H., Remya, G. S. & Anjalikrishna, P. K. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. Wiley Interdisciplinary Reviews: Comput. Mol. Sci. 12, e1601. https://doi.org/10.1002/wcms.1601 (2022).
Ali, O. A. A. et al. Synthesis, characterization, vibrational analysis and computational studies of a new schiff base from pentafluoro benzaldehyde and sulfanilamide. J. Mol. Struct. 1265, 133445. https://doi.org/10.1016/j.molstruc.2022.133445 (2022).
Trott, O., Olson, A. J., AutoDock & Vina Improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. https://doi.org/10.1002/jcc.21334 (2010).
Dallakyan, S. & Olson, A. J. in Chemical Biology: Methods and Protocols (eds Jonathan E. Hempel, Charles H. Williams, & Charles C. Hong) 243–250Springer New York, (2015).
Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated Docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791. https://doi.org/10.1002/jcc.21256 (2009). https://doi.org:
Dlala, N. A., Bouazizi, Y., Ghalla, H. & Hamdi, N. DFT calculations and molecular docking studies on a chromene derivative. Journal of Chemistry 6674261 (2021). (2021). https://doi.org/10.1155/2021/6674261
Hannah Clara, T., Muthu, S. & Christian Prasana, J. Quantum mechanical, spectroscopic and docking studies of (2E)-1-(4-aminophenyl)-3-(4-benzyloxyphenyl)-prop-2-en-1-one Chalcone derivative by density functional theory – A prospective respiratory drug. Materials Today: Proceedings 50, 2816–2825 (2022). https://doi.org/10.1016/j.matpr.2020.08.804
Sravani, M., Kumaran, A., Dhamdhere, A. T. & Kumar, N. S. Computational molecular Docking analysis and visualisation of anthocyanins for anticancer activity. Int. J. Res. Appl. Sci. Biotechnol. 8, 154–161. https://doi.org/10.31033/ijrasb.8.1.18 (2021).
Baroroh, U. et al. Molecular interaction analysis and visualization of protein-ligand Docking using biovia discovery studio visualizer. Indonesian J. Comput. Biology (IJCB). 2, 22–30. https://doi.org/10.24198/ijcb.v2i1.46322 (2023). https://doi.org:.
Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717. https://doi.org/10.1038/srep42717 (2017).
Pires, D. E., Blundell, T. L. & Ascher, D. B. PkCSM: predicting small-molecule Pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58, 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104 (2015). https://doi.org:
Maissour, A. & Benamar, S. Delving into the determinants of plant community patterns in Rivers — A case study of Hydrological Basin of Sebou (HBS). Ecohydrology. https://doi.org/10.1002/eco.2651 (2024).
Mekonnen, A., Yitayew, B., Tesema, A. & Taddese, S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. International journal of microbiology 9545693 https://doi.org/10.1155/2016/9545693 (2016).
Bajalan, I., Rouzbahani, R., Pirbalouti, A. G. & Maggi, F. Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind. Crops Prod. 107, 305–311. https://doi.org/10.1016/j.indcrop.2017.05.063 (2017).
Yeddes, W. et al. Gelatin-chitosan-pectin films incorporated with Rosemary essential oil: optimized formulation using mixture design and response surface methodology. Int. J. Biol. Macromol. 154, 92–103. https://doi.org/10.1016/j.ijbiomac.2020.03.092 (2020). https://doi.org:.
Saleh, A., Kamaly, A., Alanazi, O., Noman, O. & A. S. & Phytochemical analysis and antimicrobial activity of Rosmarinus officinalis L. Growing in Saudi arabia: experimental and computational approaches. Processes 10 https://doi.org/10.3390/pr10112422 (2022).
Ben Abada, M. et al. Variations in chemotypes patterns of Tunisian Rosmarinus officinalis essential oils and applications for controlling the date moth ectomyelois ceratoniae (Pyralidae). South. Afr. J. Bot. 128, 18–27. https://doi.org/10.1016/j.sajb.2019.10.010 (2020). https://doi.org:.
Jordán, M. J., Lax, V., Rota, M. C., Lorán, S. & Sotomayor, J. A. Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Control. 30, 463–468. https://doi.org/10.1016/j.foodcont.2012.07.029 (2013).
Ojeda-Sana, A. M., van Baren, C. M., Elechosa, M. A., Juárez, M. A. & Moreno, S. New insights into antibacterial and antioxidant activities of Rosemary essential oils and their main components. Food Control. 31, 189–195. https://doi.org/10.1016/j.foodcont.2012.09.022 (2013).
Li, G., Cervelli, C., Ruffoni, B., Shachter, A. & Dudai, N. Volatile diversity in wild populations of Rosemary (Rosmarinus officinalis L.) from the tyrrhenian sea vicinity cultivated under homogeneous environmental conditions. Ind. Crops Prod. 84, 381–390. https://doi.org/10.1016/j.indcrop.2016.02.029 (2016).
Al Zuhairi, J. J. M. J., Kashi, F. J., Rahimi-Moghaddam, A. & Yazdani, M. Antioxidant, cytotoxic and antibacterial activity of Rosmarinus officinalis L. essential oil against bacteria isolated from urinary tract infection. Eur. J. Integr. Med. 38, 101192. https://doi.org/10.1016/j.eujim.2020.101192 (2020).
Garzoli, S. et al. Headspace/GC–MS analysis and investigation of antibacterial, antioxidant and cytotoxic activity of essential oils and hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia miller. Foods 10, 1768. https://doi.org/10.3390/foods10081768 (2021).
Al-Maharik, N. et al. Chemical composition, antioxidant, antimicrobial and anti-proliferative activities of essential oils of Rosmarinus officinalis from five different sites in Palestine. Separations 9, 339. https://doi.org/10.3390/separations9110339 (2022).
Komijani, M., Rostami, H., Parastouei, K. & Fathi, M. Fabrication, characterization, and effectiveness of Rosmarinus officinalis L. essential oil nanoencapsulated by Chitosan against Aspergillus flavus and Aspergillus parasiticus in vitro. LWT 223, 117799. https://doi.org/10.1016/j.lwt.2025.117799 (2025).
Usai, M. et al. Influence of different stabilizing operations and storage time on the composition of essential oil of thyme (Thymus officinalis L.) and Rosemary (Rosmarinus officinalis L). LWT - Food Sci. Technol. 44, 244–249. https://doi.org/10.1016/j.lwt.2010.05.024 (2011).
Elbouzidi, A. et al. Formulation of a Three-Component essential oil mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for improved antioxidant activity. Pharmaceuticals 17 https://doi.org/10.3390/ph17081071 (2024).
Meziane, H. et al. Rosmarinus officinalis Linn.: unveiling its multifaceted nature in nutrition, diverse applications, and advanced extraction methods. J. Umm Al-Qura Univ. Appl. Sci. 11, 9–37. https://doi.org/10.1007/s43994-024-00144-y (2025).
Satyal, P. et al. Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods 6 https://doi.org/10.3390/foods6030020 (2017).
Guelifet, K. et al. Seasonal and Extraction-Dependent variation in the composition and bioactivity of essential oils from wild Rosmarinus officinalis L. Molecules 30 https://doi.org/10.3390/molecules30214258 (2025).
Vilas-Boas, S. M., da Costa, M. C., Coutinho, J. A. P., Ferreira, O. & Pinho, S. P. Experimental, Modeling, and Environmental Distribution. Ind. Eng. Chem. Res. 61, 3154–3167. https://doi.org/10.1021/acs.iecr.1c04196 (2022). Octanol–Water Partition Coefficients and Aqueous Solubility Data of Monoterpenoids:.
Cordeiro, L. et al. Antibacterial and antibiofilm activity of myrtenol against Staphylococcus aureus. Pharmaceuticals 13 https://doi.org/10.3390/ph13060133 (2020).
Selvaraj, A. et al. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of acinetobacter baumannii. Sci. Rep. 10, 21975. https://doi.org/10.1038/s41598-020-79128-x (2020).
Lopez-Romero, J. C., González-Ríos, H., Borges, A. & Simões, M. Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine 795435 (2015). (2015). https://doi.org/10.1155/2015/795435
Swamy, M. K., Akhtar, M. S. & Sinniah, U. R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evidence-Based Complementary and Alternative Medicine 3012462. https://doi.org/10.1155/2016/3012462 (2016).
Cristani, M. et al. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J. Agric. Food Chem. 55, 6300–6308. https://doi.org/10.1021/jf070094x (2007).
Kenney, P. M., Lam, L. T. & Zheng, G. Q. Effects of Carvone compounds on glutathione S-Transferase activity in A/J mice. J. Agric. Food Chem. 40, 751–755. https://doi.org/10.1021/jf00017a008 (1992).
Chraibi, M., Farah, A., Elamin, O., Iraqui, H. M. & Fikri-Benbrahim, K. Characterization, antioxidant, antimycobacterial, antimicrobial effcts of Moroccan Rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. Journal Adv. Pharm. Technol. & Research 11, 25-29 (2020).
Masnabadi, N. et al. Structural, electronic, reactivity, and conformational features of 2, 5, 5-trimethyl-1, 3, 2-diheterophosphinane-2-sulfide, and its derivatives: DFT, MEP, and NBO calculations. Molecules 27, 4011. https://doi.org/10.3390/molecules27134011 (2022).
Akbari, Z. et al. Biological evaluation, DFT, MEP, HOMO-LUMO analysis and ensemble docking studies of Zn (II) complexes of bidentate and tetradentate Schiff base ligands as antileukemia agents. Journal of Molecular Structure 1301, 137400. https://doi.org/10.1016/j.molstruc.2023.137400 (2024).
Kaavin, K. et al. In-silico DFT studies and molecular Docking evaluation of benzimidazo methoxy quinoline-2-one ligand and its Co, Ni, Cu and Zn complexes as potential inhibitors of Bcl-2, Caspase-3, EGFR, mTOR, and PI3K, cancer-causing proteins. Chem. Phys. Impact. 8, 100418. https://doi.org/10.1016/j.chphi.2023.100418 (2024).
Jaramillo, P., Domingo, L. R., Chamorro, E. & Pérez, P. A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J. Mol. Struct. (Thoechem). 865, 68–72. https://doi.org/10.1016/j.theochem.2008.06.022 (2008).
Domingo, L. R., Aurell, M. J., Pérez, P. & Contreras, R. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 58, 4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6 (2002). https://doi.org:
Qiu, X. et al. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. 10, 2008–2016. https://doi.org/10.1110/ps.18001 (2001). https://doi.org:
Bax, B. D. et al. Type IIA topoisomerase Inhibition by a new class of antibacterial agents. Nature 466, 935–940. https://doi.org/10.1038/nature09197 (2010).
Collin, F., Karkare, S. & Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl. Microbiol. Biotechnol. 92, 479–497. https://doi.org/10.1007/s00253-011-3557-z (2011).
Revtovich, S. et al. Three-dimensional structures of noncovalent complexes of citrobacter freundii methionine γ-lyase with substrates. Biochem. (Moscow). 76, 564–570. https://doi.org/10.1134/S0006297911050063 (2011). https://doi.org:
Batuev, E. et al. NMR screening of potential inhibitors of methionine γ-lyase from citrobacter freundii. Mol. Biol. 48, 896–905. https://doi.org/10.1134/S0026893314060028 (2014). https://doi.org:
Sato, D. & Nozaki, T. Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life. 61, 1019–1028. https://doi.org/10.1002/iub.255 (2009). https://doi.org:
Nandakumar, J., Nair, P. A. & Shuman, S. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Mol. Cell. 26, 257–271. https://doi.org/10.1016/j.molcel.2007.02.026 (2007). https://doi.org:
Benjamin, I. et al. Antimalarial potential of naphthalene-sulfonic acid derivatives: molecular electronic properties, vibrational assignments, and in-silico molecular Docking studies. J. Mol. Struct. 1264, 133298. https://doi.org/10.1016/j.molstruc.2022.133298 (2022).
Sharma, V., Sharma, P. C. & Kumar, V. In silico molecular docking analysis of natural pyridoacridines as anticancer agents. Advances in Chemistry 5409387. https://doi.org/10.1155/2016/5409387 (2016).
Lipinski, C. A. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technol. 1, 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007 (2004). https://doi.org:.
Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623. https://doi.org/10.1021/jm020017n (2002). https://doi.org:.
Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1, 55–68. https://doi.org/10.1021/cc9800071 (1999).
Belay, Y. et al. Molecular hybrid of 1, 2, 3-triazole and schiff base as potential antibacterial agents: DFT, molecular Docking and ADME studies. J. Mol. Struct. 1286, 135617. https://doi.org/10.1016/j.molstruc.2023.135617 (2023).
Author information
Authors and Affiliations
Contributions
Conceptualization: YL, AM; Data curation: YL, SE, MD, AM; Formal Analysis: YL, SE, MD, AM; Funding acquisition: YL, MB, KM, AM; Investigation: YL, MD, NE, MB, KM, AM; Methodology: YL, MD, AM; Project administration: AM; Resources: MB, KM, AM; Software: YL, SE, MD, AM; Supervision: MB, KM, AM; Validation: MS, MB, KM, AM; Visualization: AM; Writing – original draft: YL, SE, MD, MS; Writing – review & editing: AM.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Lahlou, Y., Elorchi, S., Dakir, M. et al. Experimental and molecular docking analyses of antibacterial activity in moroccan Rosmarinus officinalis essential oil. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38203-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38203-5


