Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Experimental and molecular docking analyses of antibacterial activity in moroccan Rosmarinus officinalis essential oil
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

Experimental and molecular docking analyses of antibacterial activity in moroccan Rosmarinus officinalis essential oil

  • Youssef Lahlou1,
  • Soukaina Elorchi2,
  • Mohamed Dakir3,
  • Mohammed Salah2,
  • Nirmine Ezzouine1,
  • Malika Belfaiza1,
  • Kacem Makroum1 &
  • …
  • Abdellah Maissour1 

Scientific Reports , Article number:  (2026) Cite this article

  • 745 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Biotechnology
  • Drug discovery
  • Microbiology

Abstract

Antimicrobial resistance motivates antibacterial agents with multi-target mechanisms. We evaluated Moroccan rosemary essential oil (ROEO) against four pathogens (Escherichia coli, Citrobacter freundii, Staphylococcus aureus, Enterococcus faecalis) by disk diffusion and broth microdilution. ROEO inhibited all strains (zones 11.3–21.0 mm); activity was bactericidal for E. faecalis (MBC/MIC = 2.0) and bacteriostatic for others (MBC/MIC > 4). Bioassay-guided silica chromatography, using E. faecalis as the pre-specified indicator, localised activity to a polar fraction (F8; 18.5% of the oil; 14.0 ± 1.71 mm). GC–MS showed F8 was enriched in oxygenated monoterpenes (97.45%): myrtenol, verbenone, p-cymen-8-ol, γ-terpinen-7-al, carvone, β-thujone. Docking (AutoDock Vina) predicted binding of major constituents to essential enzymes (tyrosyl-tRNA synthetase, L-methionine γ-lyase, DNA gyrase B, and NAD⁺-dependent DNA ligase); native-ligand redocking reproduced crystallographic poses (RMSD ≤ 2.0 Å). In silico ADMET supported drug-like properties with high intestinal absorption and class-typical CNS-penetration and skin-sensitisation alerts. ROEO’s antibacterial profile is underpinned by an oxygenated-monoterpene fraction and yields testable hypotheses for enzyme validation, synergy studies, and in vivo efficacy and safety.

Similar content being viewed by others

Combined antibacterial effect of essential oils from three Indian medicinal plants and antibiotic tetracycline on MRSA using simplex centroid mixture design

Article Open access 06 October 2025

Molecular response of Pseudomonas aeruginosa to rosemary essential oil and chlorogenic acid at subinhibitory concentration revealed by comparative transcriptomic approach

Article Open access 11 November 2025

Assessment of the in vitro antimicrobial activity and fatty acid composition of crocodile oil from Crocodylus siamensis

Article Open access 06 August 2025

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information file.

References

  1. Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0 (2022).

    Google Scholar 

  2. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. (2016).

  3. CDC. Antibiotic resistance threats in the United States. (2019).

  4. Organization, W. H. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 (World Health Organization, 2022).

  5. Jabeen, I., Islam, S., Hassan, A. K. M. I., Tasnim, Z. & Shuvo, S. R. A brief insight into citrobacter species - a growing threat to public health. Front. Antibiot. 2–2023. https://doi.org/10.3389/frabi.2023.1276982 (2023).

  6. Prevention, E. C. & f., D. & Control. Assessing the health burden of infections with antibiotic-resistant bacteria in the EU/EEA, 2016–2020. Stockholm: ECDC (2022).

  7. Zainab et al. Novel Polyhydroquinoline-Hydrazide-Linked Schiff’s Base Derivatives: Multistep Synthesis, Antimicrobial, and Calcium-Channel-Blocking Activities. Antibiotics 11 (2022). https://doi.org/10.3390/antibiotics11111568

  8. Shahab, N. et al. Hydrazone–Schiff base derivatives bearing a polyhydroquinoline scaffold as potent antimicrobial agents: in Vitro, molecular Docking and DFT insights. J. Comput. Biophys. Chem. 25, 685–702. https://doi.org/10.1142/S2737416525500632 (2025).

    Google Scholar 

  9. Cherrate, M. et al. Acinos Alpinus and Ziziphora hispanica: phenolic Profile, antioxidant and antibacterial properties of hydromethanolic extracts from aerial parts. Moroccan J. Chem. 12, 594–613. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i2.44010 (2024).

    Google Scholar 

  10. Visan, A. I. & Negut, I. Coatings based on essential oils for combating antibiotic resistance. Antibiotics 13 https://doi.org/10.3390/antibiotics13070625 (2024).

  11. Nieto, G., Ros, G. & Castillo, J. Antioxidant and antimicrobial properties of Rosemary (Rosmarinus officinalis, L.): A review. Medicines 5 https://doi.org/10.3390/medicines5030098 (2018).

  12. Lahlou, Y., Moujabbir, S., Aboukhalaf, A., El Amraoui, B. & Bamhaoud, T. Antibacterial activity of essential oils of salvia officinalis growing in Morocco. Roczniki Państwowego Zakładu Higieny. 74 https://doi.org/10.32394/rpzh.2023.0275 (2023).

  13. Zochedh, A., Priya, M., Shunmuganarayanan, A., Thandavarayan, K. & Sultan, A. B. Investigation on structural, spectroscopic, DFT, biological activity and molecular Docking simulation of essential oil Gamma-Terpinene. J. Mol. Struct. 1268, 133651. https://doi.org/10.1016/j.molstruc.2022.133651 (2022).

    Google Scholar 

  14. Frisch, M. Gaussian 09, revision d. 01, Gaussian. Inc Wallingford CT 201 (2009).

  15. Salah, M. et al. Theoretical study of the 1, 3-DC reaction between fluorinated alkynes and azides: reactivity indices, transition structures, IGM and ELF analysis. J. Mol. Graph. Model. 94, 107458. https://doi.org/10.1016/j.jmgm.2019.107458 (2020).

    Google Scholar 

  16. Mutahir, S. et al. Investigations of electronic, structural, and in Silico anticancer potential of persuasive phytoestrogenic isoflavene-based Mannich bases. Molecules 28, 5911. https://doi.org/10.3390/molecules28155911 (2023).

    Google Scholar 

  17. Rezvan, V. H. & Molecular structure HOMO–LUMO, and NLO studies of some Quinoxaline 1, 4-dioxide derivatives: computational (HF and DFT) analysis. Results Chem. 7, 101437. https://doi.org/10.1016/j.rechem.2024.101437 (2024).

    Google Scholar 

  18. Domingo, L. R. & Pérez, P. Global and local reactivity indices for electrophilic/nucleophilic free radicals. Org. Biomol. Chem. 11, 4350–4358. https://doi.org/10.1039/C3OB40337H (2013). https://doi.org:.

    Google Scholar 

  19. Akman, F. et al. Molecular structure, electronic properties, reactivity (ELF, LOL, and Fukui), and NCI-RDG studies of the binary mixture of water and essential oil of phlomis Bruguieri. Molecules 28, 2684. https://doi.org/10.3390/molecules28062684 (2023).

    Google Scholar 

  20. Suresh, C. H., Remya, G. S. & Anjalikrishna, P. K. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. Wiley Interdisciplinary Reviews: Comput. Mol. Sci. 12, e1601. https://doi.org/10.1002/wcms.1601 (2022).

    Google Scholar 

  21. Ali, O. A. A. et al. Synthesis, characterization, vibrational analysis and computational studies of a new schiff base from pentafluoro benzaldehyde and sulfanilamide. J. Mol. Struct. 1265, 133445. https://doi.org/10.1016/j.molstruc.2022.133445 (2022).

    Google Scholar 

  22. Trott, O., Olson, A. J., AutoDock & Vina Improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. https://doi.org/10.1002/jcc.21334 (2010).

    Google Scholar 

  23. Dallakyan, S. & Olson, A. J. in Chemical Biology: Methods and Protocols (eds Jonathan E. Hempel, Charles H. Williams, & Charles C. Hong) 243–250Springer New York, (2015).

  24. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated Docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791. https://doi.org/10.1002/jcc.21256 (2009). https://doi.org:

    Google Scholar 

  25. Dlala, N. A., Bouazizi, Y., Ghalla, H. & Hamdi, N. DFT calculations and molecular docking studies on a chromene derivative. Journal of Chemistry 6674261 (2021). (2021). https://doi.org/10.1155/2021/6674261

  26. Hannah Clara, T., Muthu, S. & Christian Prasana, J. Quantum mechanical, spectroscopic and docking studies of (2E)-1-(4-aminophenyl)-3-(4-benzyloxyphenyl)-prop-2-en-1-one Chalcone derivative by density functional theory – A prospective respiratory drug. Materials Today: Proceedings 50, 2816–2825 (2022). https://doi.org/10.1016/j.matpr.2020.08.804

  27. Sravani, M., Kumaran, A., Dhamdhere, A. T. & Kumar, N. S. Computational molecular Docking analysis and visualisation of anthocyanins for anticancer activity. Int. J. Res. Appl. Sci. Biotechnol. 8, 154–161. https://doi.org/10.31033/ijrasb.8.1.18 (2021).

    Google Scholar 

  28. Baroroh, U. et al. Molecular interaction analysis and visualization of protein-ligand Docking using biovia discovery studio visualizer. Indonesian J. Comput. Biology (IJCB). 2, 22–30. https://doi.org/10.24198/ijcb.v2i1.46322 (2023). https://doi.org:.

    Google Scholar 

  29. Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717. https://doi.org/10.1038/srep42717 (2017).

    Google Scholar 

  30. Pires, D. E., Blundell, T. L. & Ascher, D. B. PkCSM: predicting small-molecule Pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58, 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104 (2015). https://doi.org:

    Google Scholar 

  31. Maissour, A. & Benamar, S. Delving into the determinants of plant community patterns in Rivers — A case study of Hydrological Basin of Sebou (HBS). Ecohydrology. https://doi.org/10.1002/eco.2651 (2024).

  32. Mekonnen, A., Yitayew, B., Tesema, A. & Taddese, S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. International journal of microbiology 9545693 https://doi.org/10.1155/2016/9545693 (2016).

  33. Bajalan, I., Rouzbahani, R., Pirbalouti, A. G. & Maggi, F. Antioxidant and antibacterial activities of the essential oils obtained from seven Iranian populations of Rosmarinus officinalis. Ind. Crops Prod. 107, 305–311. https://doi.org/10.1016/j.indcrop.2017.05.063 (2017).

    Google Scholar 

  34. Yeddes, W. et al. Gelatin-chitosan-pectin films incorporated with Rosemary essential oil: optimized formulation using mixture design and response surface methodology. Int. J. Biol. Macromol. 154, 92–103. https://doi.org/10.1016/j.ijbiomac.2020.03.092 (2020). https://doi.org:.

    Google Scholar 

  35. Saleh, A., Kamaly, A., Alanazi, O., Noman, O. & A. S. & Phytochemical analysis and antimicrobial activity of Rosmarinus officinalis L. Growing in Saudi arabia: experimental and computational approaches. Processes 10 https://doi.org/10.3390/pr10112422 (2022).

  36. Ben Abada, M. et al. Variations in chemotypes patterns of Tunisian Rosmarinus officinalis essential oils and applications for controlling the date moth ectomyelois ceratoniae (Pyralidae). South. Afr. J. Bot. 128, 18–27. https://doi.org/10.1016/j.sajb.2019.10.010 (2020). https://doi.org:.

    Google Scholar 

  37. Jordán, M. J., Lax, V., Rota, M. C., Lorán, S. & Sotomayor, J. A. Effect of bioclimatic area on the essential oil composition and antibacterial activity of Rosmarinus officinalis L. Food Control. 30, 463–468. https://doi.org/10.1016/j.foodcont.2012.07.029 (2013).

    Google Scholar 

  38. Ojeda-Sana, A. M., van Baren, C. M., Elechosa, M. A., Juárez, M. A. & Moreno, S. New insights into antibacterial and antioxidant activities of Rosemary essential oils and their main components. Food Control. 31, 189–195. https://doi.org/10.1016/j.foodcont.2012.09.022 (2013).

    Google Scholar 

  39. Li, G., Cervelli, C., Ruffoni, B., Shachter, A. & Dudai, N. Volatile diversity in wild populations of Rosemary (Rosmarinus officinalis L.) from the tyrrhenian sea vicinity cultivated under homogeneous environmental conditions. Ind. Crops Prod. 84, 381–390. https://doi.org/10.1016/j.indcrop.2016.02.029 (2016).

    Google Scholar 

  40. Al Zuhairi, J. J. M. J., Kashi, F. J., Rahimi-Moghaddam, A. & Yazdani, M. Antioxidant, cytotoxic and antibacterial activity of Rosmarinus officinalis L. essential oil against bacteria isolated from urinary tract infection. Eur. J. Integr. Med. 38, 101192. https://doi.org/10.1016/j.eujim.2020.101192 (2020).

    Google Scholar 

  41. Garzoli, S. et al. Headspace/GC–MS analysis and investigation of antibacterial, antioxidant and cytotoxic activity of essential oils and hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia miller. Foods 10, 1768. https://doi.org/10.3390/foods10081768 (2021).

    Google Scholar 

  42. Al-Maharik, N. et al. Chemical composition, antioxidant, antimicrobial and anti-proliferative activities of essential oils of Rosmarinus officinalis from five different sites in Palestine. Separations 9, 339. https://doi.org/10.3390/separations9110339 (2022).

    Google Scholar 

  43. Komijani, M., Rostami, H., Parastouei, K. & Fathi, M. Fabrication, characterization, and effectiveness of Rosmarinus officinalis L. essential oil nanoencapsulated by Chitosan against Aspergillus flavus and Aspergillus parasiticus in vitro. LWT 223, 117799. https://doi.org/10.1016/j.lwt.2025.117799 (2025).

    Google Scholar 

  44. Usai, M. et al. Influence of different stabilizing operations and storage time on the composition of essential oil of thyme (Thymus officinalis L.) and Rosemary (Rosmarinus officinalis L). LWT - Food Sci. Technol. 44, 244–249. https://doi.org/10.1016/j.lwt.2010.05.024 (2011).

    Google Scholar 

  45. Elbouzidi, A. et al. Formulation of a Three-Component essential oil mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for improved antioxidant activity. Pharmaceuticals 17 https://doi.org/10.3390/ph17081071 (2024).

  46. Meziane, H. et al. Rosmarinus officinalis Linn.: unveiling its multifaceted nature in nutrition, diverse applications, and advanced extraction methods. J. Umm Al-Qura Univ. Appl. Sci. 11, 9–37. https://doi.org/10.1007/s43994-024-00144-y (2025).

    Google Scholar 

  47. Satyal, P. et al. Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods 6 https://doi.org/10.3390/foods6030020 (2017).

  48. Guelifet, K. et al. Seasonal and Extraction-Dependent variation in the composition and bioactivity of essential oils from wild Rosmarinus officinalis L. Molecules 30 https://doi.org/10.3390/molecules30214258 (2025).

  49. Vilas-Boas, S. M., da Costa, M. C., Coutinho, J. A. P., Ferreira, O. & Pinho, S. P. Experimental, Modeling, and Environmental Distribution. Ind. Eng. Chem. Res. 61, 3154–3167. https://doi.org/10.1021/acs.iecr.1c04196 (2022). Octanol–Water Partition Coefficients and Aqueous Solubility Data of Monoterpenoids:.

  50. Cordeiro, L. et al. Antibacterial and antibiofilm activity of myrtenol against Staphylococcus aureus. Pharmaceuticals 13 https://doi.org/10.3390/ph13060133 (2020).

  51. Selvaraj, A. et al. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of acinetobacter baumannii. Sci. Rep. 10, 21975. https://doi.org/10.1038/s41598-020-79128-x (2020).

    Google Scholar 

  52. Lopez-Romero, J. C., González-Ríos, H., Borges, A. & Simões, M. Antibacterial Effects and Mode of Action of Selected Essential Oils Components against Escherichia coli and Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine 795435 (2015). (2015). https://doi.org/10.1155/2015/795435

  53. Swamy, M. K., Akhtar, M. S. & Sinniah, U. R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evidence-Based Complementary and Alternative Medicine 3012462. https://doi.org/10.1155/2016/3012462 (2016).

  54. Cristani, M. et al. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J. Agric. Food Chem. 55, 6300–6308. https://doi.org/10.1021/jf070094x (2007).

    Google Scholar 

  55. Kenney, P. M., Lam, L. T. & Zheng, G. Q. Effects of Carvone compounds on glutathione S-Transferase activity in A/J mice. J. Agric. Food Chem. 40, 751–755. https://doi.org/10.1021/jf00017a008 (1992).

    Google Scholar 

  56. Chraibi, M., Farah, A., Elamin, O., Iraqui, H. M. & Fikri-Benbrahim, K. Characterization, antioxidant, antimycobacterial, antimicrobial effcts of Moroccan Rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. Journal Adv. Pharm. Technol. & Research 11, 25-29 (2020).

  57. Masnabadi, N. et al. Structural, electronic, reactivity, and conformational features of 2, 5, 5-trimethyl-1, 3, 2-diheterophosphinane-2-sulfide, and its derivatives: DFT, MEP, and NBO calculations. Molecules 27, 4011. https://doi.org/10.3390/molecules27134011 (2022).

    Google Scholar 

  58. Akbari, Z. et al. Biological evaluation, DFT, MEP, HOMO-LUMO analysis and ensemble docking studies of Zn (II) complexes of bidentate and tetradentate Schiff base ligands as antileukemia agents. Journal of Molecular Structure 1301, 137400. https://doi.org/10.1016/j.molstruc.2023.137400 (2024).

  59. Kaavin, K. et al. In-silico DFT studies and molecular Docking evaluation of benzimidazo methoxy quinoline-2-one ligand and its Co, Ni, Cu and Zn complexes as potential inhibitors of Bcl-2, Caspase-3, EGFR, mTOR, and PI3K, cancer-causing proteins. Chem. Phys. Impact. 8, 100418. https://doi.org/10.1016/j.chphi.2023.100418 (2024).

    Google Scholar 

  60. Jaramillo, P., Domingo, L. R., Chamorro, E. & Pérez, P. A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J. Mol. Struct. (Thoechem). 865, 68–72. https://doi.org/10.1016/j.theochem.2008.06.022 (2008).

    Google Scholar 

  61. Domingo, L. R., Aurell, M. J., Pérez, P. & Contreras, R. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 58, 4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6 (2002). https://doi.org:

    Google Scholar 

  62. Qiu, X. et al. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci. 10, 2008–2016. https://doi.org/10.1110/ps.18001 (2001). https://doi.org:

    Google Scholar 

  63. Bax, B. D. et al. Type IIA topoisomerase Inhibition by a new class of antibacterial agents. Nature 466, 935–940. https://doi.org/10.1038/nature09197 (2010).

    Google Scholar 

  64. Collin, F., Karkare, S. & Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl. Microbiol. Biotechnol. 92, 479–497. https://doi.org/10.1007/s00253-011-3557-z (2011).

    Google Scholar 

  65. Revtovich, S. et al. Three-dimensional structures of noncovalent complexes of citrobacter freundii methionine γ-lyase with substrates. Biochem. (Moscow). 76, 564–570. https://doi.org/10.1134/S0006297911050063 (2011). https://doi.org:

    Google Scholar 

  66. Batuev, E. et al. NMR screening of potential inhibitors of methionine γ-lyase from citrobacter freundii. Mol. Biol. 48, 896–905. https://doi.org/10.1134/S0026893314060028 (2014). https://doi.org:

    Google Scholar 

  67. Sato, D. & Nozaki, T. Methionine gamma-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life. 61, 1019–1028. https://doi.org/10.1002/iub.255 (2009). https://doi.org:

    Google Scholar 

  68. Nandakumar, J., Nair, P. A. & Shuman, S. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Mol. Cell. 26, 257–271. https://doi.org/10.1016/j.molcel.2007.02.026 (2007). https://doi.org:

    Google Scholar 

  69. Benjamin, I. et al. Antimalarial potential of naphthalene-sulfonic acid derivatives: molecular electronic properties, vibrational assignments, and in-silico molecular Docking studies. J. Mol. Struct. 1264, 133298. https://doi.org/10.1016/j.molstruc.2022.133298 (2022).

    Google Scholar 

  70. Sharma, V., Sharma, P. C. & Kumar, V. In silico molecular docking analysis of natural pyridoacridines as anticancer agents. Advances in Chemistry 5409387. https://doi.org/10.1155/2016/5409387 (2016).

  71. Lipinski, C. A. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technol. 1, 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007 (2004). https://doi.org:.

    Google Scholar 

  72. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623. https://doi.org/10.1021/jm020017n (2002). https://doi.org:.

    Google Scholar 

  73. Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1, 55–68. https://doi.org/10.1021/cc9800071 (1999).

    Google Scholar 

  74. Belay, Y. et al. Molecular hybrid of 1, 2, 3-triazole and schiff base as potential antibacterial agents: DFT, molecular Docking and ADME studies. J. Mol. Struct. 1286, 135617. https://doi.org/10.1016/j.molstruc.2023.135617 (2023).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, URL–CNRST n°10, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco

    Youssef Lahlou, Nirmine Ezzouine, Malika Belfaiza, Kacem Makroum & Abdellah Maissour

  2. Molecular Modeling and Spectroscopy Research Team, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco

    Soukaina Elorchi & Mohammed Salah

  3. Laboratory of Organic Chemistry, Materials, Electrochemistry, and Environment, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Casablanca, B.P.2693, Maarif, 20000, Morocco

    Mohamed Dakir

Authors
  1. Youssef Lahlou
    View author publications

    Search author on:PubMed Google Scholar

  2. Soukaina Elorchi
    View author publications

    Search author on:PubMed Google Scholar

  3. Mohamed Dakir
    View author publications

    Search author on:PubMed Google Scholar

  4. Mohammed Salah
    View author publications

    Search author on:PubMed Google Scholar

  5. Nirmine Ezzouine
    View author publications

    Search author on:PubMed Google Scholar

  6. Malika Belfaiza
    View author publications

    Search author on:PubMed Google Scholar

  7. Kacem Makroum
    View author publications

    Search author on:PubMed Google Scholar

  8. Abdellah Maissour
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: YL, AM; Data curation: YL, SE, MD, AM; Formal Analysis: YL, SE, MD, AM; Funding acquisition: YL, MB, KM, AM; Investigation: YL, MD, NE, MB, KM, AM; Methodology: YL, MD, AM; Project administration: AM; Resources: MB, KM, AM; Software: YL, SE, MD, AM; Supervision: MB, KM, AM; Validation: MS, MB, KM, AM; Visualization: AM; Writing – original draft: YL, SE, MD, MS; Writing – review & editing: AM.

Corresponding author

Correspondence to Abdellah Maissour.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahlou, Y., Elorchi, S., Dakir, M. et al. Experimental and molecular docking analyses of antibacterial activity in moroccan Rosmarinus officinalis essential oil. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38203-5

Download citation

  • Received: 01 September 2025

  • Accepted: 29 January 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38203-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Rosmarinus officinalis
  • Enterococcus faecalis
  • Bioassay-guided fractionation
  • GC–MS
  • Molecular docking
  • Antibacterial activity
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research