Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Rapid test for detecting red–green color vision deficiencies using a neural network-assisted color-naming task
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Rapid test for detecting red–green color vision deficiencies using a neural network-assisted color-naming task

  • José A. R. Monteiro1 na1,
  • Dora N. Marques1 na1,
  • João M. M. Linhares1 na1 &
  • …
  • Sérgio M. C. Nascimento1 na1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational biology and bioinformatics
  • Engineering
  • Health care
  • Mathematics and computing
  • Medical research

Abstract

This study presents and evaluates a rapid digital color vision deficiency test using a color-naming task supported by a neural network model. Thirty-three normal trichromats, 12 dichromats, and 11 anomalous trichromats named 182 natural-scene colors using 11 basic terms. A neural network classified individuals for screening, classification, and diagnosis. Sensitivity and specificity reached 97% and 99% for screening analyzing the full and a 20-color subset, respectively. For classification and diagnosis, accuracy was slightly lower. Results show that color naming can efficiently detect deficiencies, suggesting that a fast and accurate screening test using only 20 colors can be completed in under 2 min.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the corresponding author upon reasonable request.

References

  1. Nugent, T. W. & Zele, A. J. What can the eye see with melanopsin? Proc. Natl. Acad. Sci. 121, e2411151121 (2024).

    Google Scholar 

  2. Barrionuevo, P. A., Salinas, S., Fanchini, J. M. & M. L. & Are IpRGCs involved in human color vision? Hints from physiology, psychophysics, and natural image statistics. Vis. Res. 217, 108378 (2024).

    Google Scholar 

  3. Merbs, S. L. & Nathans, J. Absorption spectra of human cone pigments. Nature 356, 433–435 (1992).

    Google Scholar 

  4. Neitz, M., Mancuso, K. & Neitz, J. Colour vision defects. In Encyclopedia of Life Sciences (Wiley, 2011).

  5. Neitz, M., Patterson, S. S. & Neitz, J. Photopigment genes, cones, and color update: disrupting the splicing code causes a diverse array of vision disorders. Curr. Opin. Behav. Sci. 30, 60–66 (2019).

    Google Scholar 

  6. Neitz, J. & Neitz, M. The genetics of normal and defective color vision. Vis. Res. 51, 633–651 (2011).

    Google Scholar 

  7. Simunovic, M. P. Acquired color vision deficiency. Surv. Ophthalmol. 61, 132–155 (2016).

    Google Scholar 

  8. Zhang, F. et al. Revealing how color vision phenotype and genotype manifest in individual cone cells. Investig. Opthalmol. Vis. Sci. 62, 8 (2021).

    Google Scholar 

  9. Birch, J. Worldwide prevalence of red-green color deficiency. J. Opt. Soc. Am. A. 29, 313 (2012).

    Google Scholar 

  10. Wright, W. D. The characteristics of tritanopia. J. Opt. Soc. Am. 42, 509 (1952).

    Google Scholar 

  11. Schneck, M. E., Haegerstrom-Portnoy, G., Lott, L. A. & Brabyn, J. A. Comparison of panel D-15 tests in a large older population. Optom. Vis. Sci. 91, 284–290 (2014).

    Google Scholar 

  12. Hasrod, N. & Rubin, A. Defects of colour vision: A review of congenital and acquired colour vision deficiencies. Afr. Vis. Eye Health. 75, 6 (2016).

    Google Scholar 

  13. Dain, S. J. Clinical colour vision tests. Clin. Exp. Optom. 87, 276–293 (2004).

    Google Scholar 

  14. Birch, J. Diagnosis of Defective Colour Vision (Oxford University Press, 1993).

  15. Tekavčič Pompe, M. Color vision testing in children. Color. Res. Appl. 45, 775–781 (2020).

    Google Scholar 

  16. Regan, B. C., Reffin, J. P. & Mollon, J. D. Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vis. Res. 34, 1279–1299 (1994).

    Google Scholar 

  17. French, A., Rose, K., Thompson, K. & Cornell, E. The evolution of colour vision testing. Aust. Orthop. J. 40, 7–15 (2008).

    Google Scholar 

  18. Evans, B. E. W. et al. Multicenter evaluation of the color vision screener test. J. Opt. Soc. Am. A. 42, B190 (2025).

    Google Scholar 

  19. Rabin, J., Gooch, J. & Ivan, D. Rapid quantification of color vision: the cone contrast test. Investig. Opthalmol. Vis. Sci. 52, 816 (2011).

    Google Scholar 

  20. Barbur, J. L., Rodriguez-Carmona, M. & Evans, B. E. W. Color vision assessment‐3. An efficient, two‐step, color assessment protocol. Color. Res. Appl. 46, 33–45 (2021).

    Google Scholar 

  21. Birch, J. Elsevier,. Colour vision examination. In Investigative Techniques and Ocular Examination 13–24 (2003).

  22. Birch, J. Efficiency of the Ishihara test for identifying red-green colour deficiency. Ophthalmic Physiol. Opt. 17, 403–408 (1997).

    Google Scholar 

  23. Birch, J. Identification of red–green colour deficiency: Sensitivity of the Ishihara and American optical company (Hard, Rand and Rittler) pseudo-isochromatic plates to identify slight anomalous trichromatism. Ophthalmic Physiol. Opt. 30, 667–671 (2010).

    Google Scholar 

  24. Almustanyir, A. Review of the color vision tests currently in use. J. Ophthalmol. Vis. Sci. 5 (1), 1036 (2020).

    Google Scholar 

  25. Birch, J. A practical guide for colour-vision examination: Report of the standardization committee of the international research group on colour-vision deficiencies. Ophthalmic Physiol. Opt. 5, 265–285 (1985).

    Google Scholar 

  26. Rezeanu, D., Kuchenbecker, J. A., Neitz, M. & Neitz, J. iPhone-based anomaloscope for accessible, accurate color vision testing. J. Opt. Soc. Am. A. 42, B34 (2025).

    Google Scholar 

  27. Vojkovič, K., Vrabič, N. & Tekavčič Pompe, M. Automated assessment of color vision disorders in children and adults based on the principle of Preferential looking using an eye-tracking device. J. Opt. Soc. Am. A. 42, B404 (2025).

    Google Scholar 

  28. Taore, A., Lobo, G., Turnbull, P. R. & Dakin, S. C. Diagnosis of colour vision deficits using eye movements. Sci. Rep. 12, 7734 (2022).

    Google Scholar 

  29. Berlin, B. & Kay, P. Basic Color Terms: Their Universality and Evolution (University of California Press, 1991).

  30. Lindsey, D. T. & Brown, A. M. Universality of color names. Proc. Natl. Acad. Sci. 103, 16608–16613 (2006).

    Google Scholar 

  31. Maule, J., Skelton, A. E. & Franklin, A. The development of color perception and cognition. Annu. Rev. Psychol. 74, 87–111 (2023).

    Google Scholar 

  32. Witzel, C., Flack, Z., Sanchez-Walker, E. & Franklin, A. Colour category constancy and the development of colour naming. Vis. Res. 187, 41–54 (2021).

    Google Scholar 

  33. Lillo, J., Moreira, H., Álvaro, L. & Davies, I. Use of basic color terms by red–green dichromats. Color. Res. Appl. 39, 360–371 (2014).

    Google Scholar 

  34. Siuda-Krzywicka, K. et al. When colours split from objects: The disconnection of colour perception from colour Language and colour knowledge. Cogn. Neuropsychol. 37, 325–339 (2020).

    Google Scholar 

  35. Funnell, E. & Hodges, J. R. Deficits of semantic memory and executive control: Evidence for differing effects upon naming in dementia. Aphasiology 10, 687–709 (1996).

    Google Scholar 

  36. Moreno-Martínez, F. J. & Rodríguez-Rojo, I. C. On colour category effects, and Alzheimer’s disease: A critical review of studies and further longitudinal evidence. Behav. Neurol. 1–12 (2015).

  37. Wijk, H., Berg, S., Sivik, L. & Steen, B. Colour discrimination, colour naming and colour preferences among individuals with Alzheimer’s disease. Int. J. Geriatr. Psychiatry. 14, 1000–1005 (1999).

    Google Scholar 

  38. Cole, B. L., Lian, K. & Lakkis, C. Using clinical tests of colour vision to predict the ability of colour vision deficient patients to name surface colours. Ophthalmic Physiol. Opt. 27, 381–388 (2007).

    Google Scholar 

  39. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Google Scholar 

  40. Teng, X. & Gong, Y. Research on application of machine learning in data mining. IOP Conf. Ser. Mater. Sci. Eng. 392, 062202 (2018).

    Google Scholar 

  41. Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).

    Google Scholar 

  42. Sun, Z., Chen, Y. J., Yang, Y. H., Li, Y. & Nishida, S. Machine learning modelling for multi-order human visual motion processing. Nat. Mach. Intell. 7, 1037–1052 (2025).

    Google Scholar 

  43. Colas, C., Sigaud, O. & Oudeyer, P. Y. How many random seeds? Statistical power analysis in deep reinforcement learning experiments. Preprint at (2018). https://doi.org/10.48550/ARXIV.1806.08295

  44. Evans, B. E. W., Rodriguez-Carmona, M., Llapashtica, E. & Barbur, J. L. Color screening outcomes on uncalibrated home displays—assessment of variability in sRGB color standard parameters on commercial visual displays. J. Opt. Soc. Am. A. 42, B289 (2025).

    Google Scholar 

  45. Tang, T. et al. ColourSpot, a novel gamified tablet-based test for accurate diagnosis of color vision deficiency in young children. Behav. Res. Methods. 54, 1148–1160 (2022).

    Google Scholar 

  46. Bodduluri, L., Boon, M. Y. & Dain, S. J. Evaluation of tablet computers for visual function assessment. Behav. Res. Methods. 49, 548–558 (2017).

    Google Scholar 

  47. Mendez, M. F., Mendez, M. A., Martin, R., Smyth, K. A. & Whitehouse, P. J. Complex visual disturbances in alzheimer’s disease. Neurology 40, 439–439 (1990).

    Google Scholar 

  48. Cronin-Golomb, A., Sugiura, R., Corkin, S. & Growdon, J. H. Incomplete achromatopsia in alzheimer’s disease. Neurobiol. Aging. 14, 471–477 (1993).

    Google Scholar 

  49. Pache, M. Colour vision deficiencies in Alzheimer’s disease. Age Ageing. 32, 422–426 (2003).

    Google Scholar 

  50. Salamone, G. et al. Color discrimination performance in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 27, 501–507 (2009).

    Google Scholar 

  51. Kim, H. J. et al. Deficits in color detection in patients with alzheimer disease. PLOS ONE. 17, e0262226 (2022).

    Google Scholar 

  52. Simmons, D. R. et al. Vision in autism spectrum disorders. Vis. Res. 49, 2705–2739 (2009).

    Google Scholar 

  53. Perochon, S. et al. Early detection of autism using digital behavioral phenotyping. Nat. Med. 29, 2489–2497 (2023).

    Google Scholar 

  54. Jennings, B. J. & Barbur, J. L. Colour detection thresholds as a function of chromatic adaptation and light level. Ophthalmic Physiol. Opt. 30, 560–567 (2010).

    Google Scholar 

  55. Barbur, J. L., Rodriguez-Carmona, M. & Harlow, A. Establishing the statistical limits of normal chromatic sensitivity. In CIE Expert Symposium, CIE Proceedings 75 Years of the Standard Colorimetric Observer (2006).

  56. Rodríguez-Carmona, M. Variability of Chromatic Sensitivity: Fundamental Studies and Clinical Applications (Doctoral thesis, City University London, 2006).

  57. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Google Scholar 

  58. Monteiro, J. A. R., Marques, D. N., Linhares, J. M. M. & Nascimento, S. M. C. Optimal color sets to represent the colors of natural scenes by k-medoids clustering. J. Opt. Soc. Am. A. 42, B50-B55 (2025).

    Google Scholar 

  59. Gao, C., Melgosa, M., Xiao, K., Pointer, M. R. & Li, C. Domain and range of the CIECAM16 forward transformation. Opt. Express. 31, 23702 (2023).

    Google Scholar 

  60. Li, C. et al. Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS. Color. Res. Appl. 42, 703–718 (2017).

    Google Scholar 

  61. CIE 248. The CIE 2016 colour appearance model for colour management systems: CIECAM16. CIE 248. https://doi.org/10.25039/TR.248.2022 (2022).

    Google Scholar 

  62. International Organization for Standardization & International Commission on Illumination. Colorimetry Part 5: CIE 1976 L*u*v* colour space and colour difference formulae ISO/CIE 11664-5:2024 (2024).

  63. Collier, G. A., Berlin, B. & Kay, P. Basic color terms: Their universality and evolution. Language 49, 245 (1973).

    Google Scholar 

  64. Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).

  65. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

  66. Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 1168, 022022 (2019).

    Google Scholar 

  67. Srivastava, A. et al. A Review of optimization algorithms for training neural networks. In International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET) 886–890 (IEEE, Ghaziabad, India, 2023).

  68. Wang, Q., Ma, Y., Zhao, K. & Tian, Y. A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 9, 187–212 (2022).

    Google Scholar 

  69. Dalianis, H. Evaluation metrics and evaluation. In Clinical Text Mining 45–53 (Springer International Publishing, Cham, 2018).

  70. Shapley, L. S. 17. A value for n-Person games. In Contributions to the Theory of Games (AM-28), Volume II (eds Kuhn, H. W. & Tucker, A. W.) 307–318 (Princeton University Press, 1953).

  71. Antonini, A. S. et al. Machine learning model interpretability using SHAP values: Application to igneous rock classification task. Appl. Comput. Geosci. 23, 100178 (2024).

    Google Scholar 

Download references

Funding

This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/04650/2025 (DOI https://doi.org/10.54499/UID/04650/2025). to the Physics Center of Minho and Porto Universities. José A.R. Monteiro was supported by the PhD Scholarship UI/BD/152222/2021 (DOI: https://doi.org/10.54499/UI/BD/152222/2021) from FCT, and Dora N. Marques by the PhD Scholarship 2020.05785.BD (https://doi.org/10.54499/2020.05785.BD) from FCT and the European Social Fund.

Author information

Author notes
  1. José A. R. Monteiro, Dora N. Marques, João M. M. Linhares and Sérgio M. C. Nascimento contributed equally to this work.

Authors and Affiliations

  1. Physics Center of Minho and Porto Universities (CF-UM-UP), Gualtar Campus, University of Minho, 4710-057, Braga, Portugal

    José A. R. Monteiro, Dora N. Marques, João M. M. Linhares & Sérgio M. C. Nascimento

Authors
  1. José A. R. Monteiro
    View author publications

    Search author on:PubMed Google Scholar

  2. Dora N. Marques
    View author publications

    Search author on:PubMed Google Scholar

  3. João M. M. Linhares
    View author publications

    Search author on:PubMed Google Scholar

  4. Sérgio M. C. Nascimento
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: JARM, DNM, JMML, SMCN; Data curation: JARM; Formal analysis: JARM; Funding acquisition and Investigation: JARM, JMML, SMCN; Methodology: JARM, DNM, JMML, SMCN; Project administration: JMML, SMCN; Resources: JMML, SMCN; Software, Supervision, Validation, and Visualization: JARM; Writing final draft: JARM; Writing—review & editing: JARM, DNM, JMML, SMCN. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Sérgio M. C. Nascimento.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, J.A.R., Marques, D.N., Linhares, J.M.M. et al. Rapid test for detecting red–green color vision deficiencies using a neural network-assisted color-naming task. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38222-2

Download citation

  • Received: 12 October 2025

  • Accepted: 29 January 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38222-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics