Abstract
This study presents and evaluates a rapid digital color vision deficiency test using a color-naming task supported by a neural network model. Thirty-three normal trichromats, 12 dichromats, and 11 anomalous trichromats named 182 natural-scene colors using 11 basic terms. A neural network classified individuals for screening, classification, and diagnosis. Sensitivity and specificity reached 97% and 99% for screening analyzing the full and a 20-color subset, respectively. For classification and diagnosis, accuracy was slightly lower. Results show that color naming can efficiently detect deficiencies, suggesting that a fast and accurate screening test using only 20 colors can be completed in under 2 min.
Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the corresponding author upon reasonable request.
References
Nugent, T. W. & Zele, A. J. What can the eye see with melanopsin? Proc. Natl. Acad. Sci. 121, e2411151121 (2024).
Barrionuevo, P. A., Salinas, S., Fanchini, J. M. & M. L. & Are IpRGCs involved in human color vision? Hints from physiology, psychophysics, and natural image statistics. Vis. Res. 217, 108378 (2024).
Merbs, S. L. & Nathans, J. Absorption spectra of human cone pigments. Nature 356, 433–435 (1992).
Neitz, M., Mancuso, K. & Neitz, J. Colour vision defects. In Encyclopedia of Life Sciences (Wiley, 2011).
Neitz, M., Patterson, S. S. & Neitz, J. Photopigment genes, cones, and color update: disrupting the splicing code causes a diverse array of vision disorders. Curr. Opin. Behav. Sci. 30, 60–66 (2019).
Neitz, J. & Neitz, M. The genetics of normal and defective color vision. Vis. Res. 51, 633–651 (2011).
Simunovic, M. P. Acquired color vision deficiency. Surv. Ophthalmol. 61, 132–155 (2016).
Zhang, F. et al. Revealing how color vision phenotype and genotype manifest in individual cone cells. Investig. Opthalmol. Vis. Sci. 62, 8 (2021).
Birch, J. Worldwide prevalence of red-green color deficiency. J. Opt. Soc. Am. A. 29, 313 (2012).
Wright, W. D. The characteristics of tritanopia. J. Opt. Soc. Am. 42, 509 (1952).
Schneck, M. E., Haegerstrom-Portnoy, G., Lott, L. A. & Brabyn, J. A. Comparison of panel D-15 tests in a large older population. Optom. Vis. Sci. 91, 284–290 (2014).
Hasrod, N. & Rubin, A. Defects of colour vision: A review of congenital and acquired colour vision deficiencies. Afr. Vis. Eye Health. 75, 6 (2016).
Dain, S. J. Clinical colour vision tests. Clin. Exp. Optom. 87, 276–293 (2004).
Birch, J. Diagnosis of Defective Colour Vision (Oxford University Press, 1993).
Tekavčič Pompe, M. Color vision testing in children. Color. Res. Appl. 45, 775–781 (2020).
Regan, B. C., Reffin, J. P. & Mollon, J. D. Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vis. Res. 34, 1279–1299 (1994).
French, A., Rose, K., Thompson, K. & Cornell, E. The evolution of colour vision testing. Aust. Orthop. J. 40, 7–15 (2008).
Evans, B. E. W. et al. Multicenter evaluation of the color vision screener test. J. Opt. Soc. Am. A. 42, B190 (2025).
Rabin, J., Gooch, J. & Ivan, D. Rapid quantification of color vision: the cone contrast test. Investig. Opthalmol. Vis. Sci. 52, 816 (2011).
Barbur, J. L., Rodriguez-Carmona, M. & Evans, B. E. W. Color vision assessment‐3. An efficient, two‐step, color assessment protocol. Color. Res. Appl. 46, 33–45 (2021).
Birch, J. Elsevier,. Colour vision examination. In Investigative Techniques and Ocular Examination 13–24 (2003).
Birch, J. Efficiency of the Ishihara test for identifying red-green colour deficiency. Ophthalmic Physiol. Opt. 17, 403–408 (1997).
Birch, J. Identification of red–green colour deficiency: Sensitivity of the Ishihara and American optical company (Hard, Rand and Rittler) pseudo-isochromatic plates to identify slight anomalous trichromatism. Ophthalmic Physiol. Opt. 30, 667–671 (2010).
Almustanyir, A. Review of the color vision tests currently in use. J. Ophthalmol. Vis. Sci. 5 (1), 1036 (2020).
Birch, J. A practical guide for colour-vision examination: Report of the standardization committee of the international research group on colour-vision deficiencies. Ophthalmic Physiol. Opt. 5, 265–285 (1985).
Rezeanu, D., Kuchenbecker, J. A., Neitz, M. & Neitz, J. iPhone-based anomaloscope for accessible, accurate color vision testing. J. Opt. Soc. Am. A. 42, B34 (2025).
Vojkovič, K., Vrabič, N. & Tekavčič Pompe, M. Automated assessment of color vision disorders in children and adults based on the principle of Preferential looking using an eye-tracking device. J. Opt. Soc. Am. A. 42, B404 (2025).
Taore, A., Lobo, G., Turnbull, P. R. & Dakin, S. C. Diagnosis of colour vision deficits using eye movements. Sci. Rep. 12, 7734 (2022).
Berlin, B. & Kay, P. Basic Color Terms: Their Universality and Evolution (University of California Press, 1991).
Lindsey, D. T. & Brown, A. M. Universality of color names. Proc. Natl. Acad. Sci. 103, 16608–16613 (2006).
Maule, J., Skelton, A. E. & Franklin, A. The development of color perception and cognition. Annu. Rev. Psychol. 74, 87–111 (2023).
Witzel, C., Flack, Z., Sanchez-Walker, E. & Franklin, A. Colour category constancy and the development of colour naming. Vis. Res. 187, 41–54 (2021).
Lillo, J., Moreira, H., Álvaro, L. & Davies, I. Use of basic color terms by red–green dichromats. Color. Res. Appl. 39, 360–371 (2014).
Siuda-Krzywicka, K. et al. When colours split from objects: The disconnection of colour perception from colour Language and colour knowledge. Cogn. Neuropsychol. 37, 325–339 (2020).
Funnell, E. & Hodges, J. R. Deficits of semantic memory and executive control: Evidence for differing effects upon naming in dementia. Aphasiology 10, 687–709 (1996).
Moreno-Martínez, F. J. & Rodríguez-Rojo, I. C. On colour category effects, and Alzheimer’s disease: A critical review of studies and further longitudinal evidence. Behav. Neurol. 1–12 (2015).
Wijk, H., Berg, S., Sivik, L. & Steen, B. Colour discrimination, colour naming and colour preferences among individuals with Alzheimer’s disease. Int. J. Geriatr. Psychiatry. 14, 1000–1005 (1999).
Cole, B. L., Lian, K. & Lakkis, C. Using clinical tests of colour vision to predict the ability of colour vision deficient patients to name surface colours. Ophthalmic Physiol. Opt. 27, 381–388 (2007).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Teng, X. & Gong, Y. Research on application of machine learning in data mining. IOP Conf. Ser. Mater. Sci. Eng. 392, 062202 (2018).
Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).
Sun, Z., Chen, Y. J., Yang, Y. H., Li, Y. & Nishida, S. Machine learning modelling for multi-order human visual motion processing. Nat. Mach. Intell. 7, 1037–1052 (2025).
Colas, C., Sigaud, O. & Oudeyer, P. Y. How many random seeds? Statistical power analysis in deep reinforcement learning experiments. Preprint at (2018). https://doi.org/10.48550/ARXIV.1806.08295
Evans, B. E. W., Rodriguez-Carmona, M., Llapashtica, E. & Barbur, J. L. Color screening outcomes on uncalibrated home displays—assessment of variability in sRGB color standard parameters on commercial visual displays. J. Opt. Soc. Am. A. 42, B289 (2025).
Tang, T. et al. ColourSpot, a novel gamified tablet-based test for accurate diagnosis of color vision deficiency in young children. Behav. Res. Methods. 54, 1148–1160 (2022).
Bodduluri, L., Boon, M. Y. & Dain, S. J. Evaluation of tablet computers for visual function assessment. Behav. Res. Methods. 49, 548–558 (2017).
Mendez, M. F., Mendez, M. A., Martin, R., Smyth, K. A. & Whitehouse, P. J. Complex visual disturbances in alzheimer’s disease. Neurology 40, 439–439 (1990).
Cronin-Golomb, A., Sugiura, R., Corkin, S. & Growdon, J. H. Incomplete achromatopsia in alzheimer’s disease. Neurobiol. Aging. 14, 471–477 (1993).
Pache, M. Colour vision deficiencies in Alzheimer’s disease. Age Ageing. 32, 422–426 (2003).
Salamone, G. et al. Color discrimination performance in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 27, 501–507 (2009).
Kim, H. J. et al. Deficits in color detection in patients with alzheimer disease. PLOS ONE. 17, e0262226 (2022).
Simmons, D. R. et al. Vision in autism spectrum disorders. Vis. Res. 49, 2705–2739 (2009).
Perochon, S. et al. Early detection of autism using digital behavioral phenotyping. Nat. Med. 29, 2489–2497 (2023).
Jennings, B. J. & Barbur, J. L. Colour detection thresholds as a function of chromatic adaptation and light level. Ophthalmic Physiol. Opt. 30, 560–567 (2010).
Barbur, J. L., Rodriguez-Carmona, M. & Harlow, A. Establishing the statistical limits of normal chromatic sensitivity. In CIE Expert Symposium, CIE Proceedings 75 Years of the Standard Colorimetric Observer (2006).
Rodríguez-Carmona, M. Variability of Chromatic Sensitivity: Fundamental Studies and Clinical Applications (Doctoral thesis, City University London, 2006).
Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
Monteiro, J. A. R., Marques, D. N., Linhares, J. M. M. & Nascimento, S. M. C. Optimal color sets to represent the colors of natural scenes by k-medoids clustering. J. Opt. Soc. Am. A. 42, B50-B55 (2025).
Gao, C., Melgosa, M., Xiao, K., Pointer, M. R. & Li, C. Domain and range of the CIECAM16 forward transformation. Opt. Express. 31, 23702 (2023).
Li, C. et al. Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS. Color. Res. Appl. 42, 703–718 (2017).
CIE 248. The CIE 2016 colour appearance model for colour management systems: CIECAM16. CIE 248. https://doi.org/10.25039/TR.248.2022 (2022).
International Organization for Standardization & International Commission on Illumination. Colorimetry Part 5: CIE 1976 L*u*v* colour space and colour difference formulae ISO/CIE 11664-5:2024 (2024).
Collier, G. A., Berlin, B. & Kay, P. Basic color terms: Their universality and evolution. Language 49, 245 (1973).
Bishop, C. M. Pattern Recognition and Machine Learning (Springer, 2006).
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 1168, 022022 (2019).
Srivastava, A. et al. A Review of optimization algorithms for training neural networks. In International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET) 886–890 (IEEE, Ghaziabad, India, 2023).
Wang, Q., Ma, Y., Zhao, K. & Tian, Y. A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 9, 187–212 (2022).
Dalianis, H. Evaluation metrics and evaluation. In Clinical Text Mining 45–53 (Springer International Publishing, Cham, 2018).
Shapley, L. S. 17. A value for n-Person games. In Contributions to the Theory of Games (AM-28), Volume II (eds Kuhn, H. W. & Tucker, A. W.) 307–318 (Princeton University Press, 1953).
Antonini, A. S. et al. Machine learning model interpretability using SHAP values: Application to igneous rock classification task. Appl. Comput. Geosci. 23, 100178 (2024).
Funding
This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/04650/2025 (DOI https://doi.org/10.54499/UID/04650/2025). to the Physics Center of Minho and Porto Universities. José A.R. Monteiro was supported by the PhD Scholarship UI/BD/152222/2021 (DOI: https://doi.org/10.54499/UI/BD/152222/2021) from FCT, and Dora N. Marques by the PhD Scholarship 2020.05785.BD (https://doi.org/10.54499/2020.05785.BD) from FCT and the European Social Fund.
Author information
Authors and Affiliations
Contributions
Conceptualization: JARM, DNM, JMML, SMCN; Data curation: JARM; Formal analysis: JARM; Funding acquisition and Investigation: JARM, JMML, SMCN; Methodology: JARM, DNM, JMML, SMCN; Project administration: JMML, SMCN; Resources: JMML, SMCN; Software, Supervision, Validation, and Visualization: JARM; Writing final draft: JARM; Writing—review & editing: JARM, DNM, JMML, SMCN. All authors approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Monteiro, J.A.R., Marques, D.N., Linhares, J.M.M. et al. Rapid test for detecting red–green color vision deficiencies using a neural network-assisted color-naming task. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38222-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38222-2