Abstract
Radish (Raphanus sativus L.) is an important root vegetable utilized worldwide. Highly genetic diverse germplasm of radish exists in Sikkim, but no high-yielding and climate resilient cultivar has been released so far, causing hindrance in its productivity especially under organic conditions. The present investigation was conducted to assess the existing genetic variability, and yield potential along with phytochemical constituents of sixty-one entries (fifty-seven radish genotypes and four checks) using augmented RCBD to identify genotypic performance under organic cultivation. Presence of high phytochemical composition can help to identify radish as a functional food. In the present investigation, augmented RCB design helped to handle a large number of genotypes with limited replications. The traits like total carotenoid, total carbohydrate, total sugar, reducing sugar, antioxidant capacity and total phenol content showed strong genetic potential for further selection. Character association for biochemical traits revealed that many of the traits had strong influence on each other. The genotypes were grouped into eight sub clusters nested within two macro-clusters. The findings provide an important insight towards phytochemical constituents present and their genotype-by-environment interaction in tested radish genotypes. The study concludes that genotypes SR24, SR14, SR50 and SR42 were found to be superior for their biochemical composition while genotypes SR56, SR39, and SR41 were found to be superior across years for both yield and biochemical constituents. The investigation presents the possibility of selection for radish genotypes suitable for organic farming in Sikkim Himalayan region, alongside a valuable source of medicinal value and functional food properties.
Similar content being viewed by others
Data availability
All data generated or analysed during this study are included in this published article.
References
Ahmad, M. H., Safdar, S., Kousar, S., Nadeem, M. & Asghar, Z. Functional foods and human health: An overview. Funct. Foods Phytochem. Health Promot. Potential https://doi.org/10.5772/intechopen.99000 (2021).
Gupta, E. & Mishra, P. Functional food with some health benefits, so called superfood: A review. Curr. Nutr. Food Sci. 17, 144–166. https://doi.org/10.2174/1573401316666200414150523 (2021).
Granado-Lorencio, F. & Hernández-Álvarez, E. Functional foods and health effects: A nutritional biochemistry perspective. Curr. Med. Chem. 23, 2929–2957. https://doi.org/10.2174/0929867323666160615105746 (2016).
Cartea, M. E., Francisco, M., Soengas, P. & Velasco, P. Phenolic compounds in Brassica vegetables. Molecules 16, 251–280. https://doi.org/10.3390/molecules16010251 (2011).
Sharma, R., Kumar, S., Kumar, V. & Thakur, A. Comprehensive review on nutraceutical significance of phytochemicals as functional food ingredients for human health management. J. Pharmacogn. Phytochem. 8, 385–395. https://doi.org/10.22271/phyto.2019.v8.i5h.9589 (2019).
Gómez-Campo, C. Morphology and morphotaxonomy of the Tribe Brassiceae. In Brassica Crops and Wild Allies, eds Tsunoda, S., Hinata, K. & Gómez-Campo, C. pp. 3–31 (Japan Scientific Societies Press, 1980).
Singh, A., Sharma, S. & Dolly. Radish. In Antioxidants in Vegetables and Nuts—Properties and Health Benefits, pp. 209–235 (Springer, 2020). https://doi.org/10.1007/978-981-15-7470-2_10
Gamba, M. et al. Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review. Trends Food Sci. Technol. 113, 205–218. https://doi.org/10.1016/j.tifs.2021.04.045 (2021).
Manivannan, A., Kim, J. H., Kim, D. S., Lee, E. S. & Lee, H. E. Deciphering the nutraceutical potential of Raphanus sativus—a comprehensive overview. Nutrients 11(2), 402. https://doi.org/10.3390/nu11020402 (2019).
Singh, R., Avasthe, R., Babu, S., Yadav, G. S. & Kumar, A. (eds) Climate Resilient Cropping Systems for Sikkim[Technical Bulletin]. ICAR-National Organic Farming Research Institute, Tech. Bull. 2021/01 (2021).
Di Renzo, L., De Lorenzo, A., Merra, G. & Gualtieri, P. Comment on: “A systematic review of organic versus conventional food consumption: Is there a measurable benefit on human health? Nutrients. Nutrients 12, 696. https://doi.org/10.3390/nu12030696 (2020).
Czech, A., Szmigielski, M. & Sembratowicz, I. Nutritional value and antioxidant capacity of organic and conventional vegetables of the genus Allium. Sci. Rep. 12, 18713. https://doi.org/10.1038/s41598-022-23497-y (2022).
Rubatzky, V. E. & Yamaguchi, M. World Vegetables: Principles, Production and Nutritive Values 2nd edn. (Chapman & Hall, UK, 1997). https://doi.org/10.1007/978-1-4615-6015-9.
Crisp, P. Radish, Raphanus sativus (Cruciferae). In Evolution of Crop Plants, 2nd edn., eds Smartt, J. & Simmonds, N. W. pp. 86–89 (Longman Scientific & Technical, 1995).
Van Bueren, E. L. et al. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS Wageningen J. Life Sci. 58, 193–205. https://doi.org/10.1016/j.njas.2010.04.001 (2011).
Yang, Q. Radish genetic resources. Genebank Platform, CGIAR. (2019).
Singh, B. K. Radish (Raphanus sativus L.): Breeding for higher yield, better quality and wider adaptability. In Advances in Plant Breeding Strategies: Vegetable Crops: Volume 8, Bulbs, Roots and Tubers, pp. 275–304 (Springer, 2021). https://doi.org/10.1007/978-3-030-66965-2_7
Federer, W. T. Augmented (or Hoonuiaku) designs. Hawaiian Planters’ Record 55, 191–208 (1956).
Lin, C. S. & Poushinsky, G. A modified augmented design for an early stage of plant selection involving a large number of test lines without replication. Biometrics 39, 553–561. https://doi.org/10.2307/2531083 (1983).
Nowosad, K., Liersch, A., Popławska, W. & Bocianowski, J. Genotype by environment interaction for seed yield in rapeseed (Brassica napus L.) using additive main effects and multiplicative interaction model. Euphytica 208, 187–194. https://doi.org/10.1007/s10681-015-1620-z (2016).
Kang, M. S. Using genotype-by-environment interaction for crop cultivar development. Adv. Agron. 62, 199–252. https://doi.org/10.1016/S0065-2113(08)60569-6 (1997).
Borule, T. et al. Analysis of yield stability in diverse rice genotypes. J. Adv. Biol. Biotechnol. 27, 79–89. https://doi.org/10.9734/JABB/2024/v27i2701 (2024).
Meena, V. K., Sharma, R. K., Chand, S., Kumar, S. & Choudhary, K. Comparative study of stability models for identifying stable spring wheat genotypes in diverse conditions. Discov. Agric. 3, 1–24. https://doi.org/10.1007/s44279-025-00167-x (2025).
Anshori, M. F. et al. A comprehensive multivariate approach for GxE interaction analysis in early maturing rice varieties. Front. Plant Sci. 15, 1462981. https://doi.org/10.3389/fpls.2024.1462981 (2024).
Piepho, H. P., Möhring, J., Melchinger, A. E. & Büchse, A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161, 209–228. https://doi.org/10.1007/s10681-007-9449-8 (2008).
Pathy, T. L. & Mohanraj, K. Estimating best linear unbiased predictions (BLUP) for yield and quality traits in sugarcane. Sugar Tech. 23, 1295–1305. https://doi.org/10.1007/s12355-021-01011-4 (2021).
Rabiei, B., Valizadeh, M., Ghareyazie, B. & Moghaddam, M. Evaluation of selection indices for improving rice grain shape. Field Crops Res. 89, 359–367. https://doi.org/10.1016/j.fcr.2004.02.016 (2004).
Jackson, M. L. Soil Chemical Analysis (Prentice Hall of India, India, 1973).
Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003 (1934).
Subbaiah, B. V. & Asija, G. L. A rapid procedure for the estimation of available nitrogen in soil. Curr. Sci. 25, 258–260 (1956).
Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 39–46. https://doi.org/10.1097/00010694-194501000-00006 (1945).
Metson, A. J. Methods of chemical analysis for soil survey samples, Soil Bureau Bulletin No. 12, 208 pp. (New Zealand Dept. of Scientific and Industrial Research, 1956).
Association of Official Analytical Chemists & Cunniff, P. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed. (AOAC International, 1990).
Ebell, L. F. Variation in total soluble sugars of conifer tissues with method of analysis. Phytochemistry 8, 227–233. https://doi.org/10.1016/S0031-9422(00)85818-5 (1969).
Teixeira, G. G. & Santos, P. M. Simple and cost-effective approaches for quantification of reducing sugar exploiting digital image analysis. J. Food Compos. Anal. 113, 104719. https://doi.org/10.1016/j.jfca.2022.104719 (2022).
Mushtaq, M. W. et al. Spectrophotometric determination of Vitamin C in underground vegetables and kinetic modelling to probe the effect of temperature and pH on degradation of Vitamin C. Pak. J. Bot. 54(5), 1771–1775 (2022).
Braniša, J., Jenisová, Z., Porubská, M., Jomová, K. & Valko, M. Spectrophotometric determination of chlorophylls and carotenoids: an effect of sonication and sample processing. J. Microbiol. Biotechnol. Food Sci. 3, 61–64 (2014).
Pérez-Patricio, M. et al. Optical method for estimating the chlorophyll contents in plant leaves. Sensors 18, 650. https://doi.org/10.3390/s18020650 (2018).
Oyaizu, M. Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jap. J. Nutr. Dietet. 44, 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307 (1986).
Jelodarian, S., Ebrahimabadi, A. H., Khalighi, A. & Batooli, H. Evaluation of antioxidant activity of Malus domestica fruit extract from Kashan area. Avicenna J. Phytomed. 2, 139 (2012).
Official Methods of Analysis, 18th edn. AOAC INTERNATIONAL (2005).
Official Methods of Analysis, 21st edn., Appendix D [Appendix]. AOAC INTERNATIONAL (2020). http://eoma.aoac.org/app_d.pdf
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6 (1951).
Gallik, S. Determination of the anthocyanin concentration in table wines and fruit juices using visible light spectrophotometry. Cell Biol. 2, 1–12 (2012).
Keser, S., Celik, S., Turkoglu, S., Yilmaz, O. & Turkoglu, I. Hydrogen peroxide radical scavenging and total antioxidant activity of hawthorn. Chem. J. 2, 9–12 (2012).
Tamboli, F. A. et al. Estimation of total carbohydrate content by phenol sulphuric acid method from Eichhornia crassipes (Mart.) Solms. Asian J. Res. Chem. 13(5), 357–359. https://doi.org/10.5958/0974-4150.2020.00067.X (2020).
Lin, Y. T., Liang, C. & Chen, J. H. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82, 1168–1172. https://doi.org/10.1016/j.chemosphere.2010.12.027 (2011).
Panse, V. G. & Sukhatme, P. V. Statistical methods for agricultural workers, 4th edn., p. 347 (ICAR, 1984).
Burton, G. W. & De Vane, D. E. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agron. J. 45, 478–481. https://doi.org/10.2134/agronj1953.00021962004500100005x (1953).
Johnson, H. W., Robinson, H. F. & Comstock, R. E. Estimates of genetic and environmental variability in soybeans. Agron. J. 47, 314–318. https://doi.org/10.2134/agronj1955.00021962004700070009X (1955).
Hanson, C. H., Robinson, H. F. & Comstock, R. E. Biometrical studies of yield in segregating populations of Korean lespedeza. Agron. J. 48, 268–272. https://doi.org/10.2134/agronj1956.00021962004800060008x (1956).
Lush, J. L. Heritability of quantitative characters in farm animals. Proc. 8 th Int. Congress Genet. 1948, 356–375 (1949).
Al-Jibouri, H., Miller, P. A. & Robinson, H. F. Genotypic and environmental variances and covariances in an upland cotton cross of interspecific origin. Agron. J. 50, 633–636. https://doi.org/10.2134/agronj1958.00021962005000100020x (1958).
Searle, S. R. Phenotypic, genetic and environmental correlations. Biometrics 17, 474–480. https://doi.org/10.2307/2527838 (1961).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Smith, H. F. A discriminant function for plant selection. Ann. Eugenics 7, 240–250. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x (1936).
Samyuktha, S. M., Geethanjali, S. & Bapu, J. R. Genetic diversity and correlation studies in chickpea (Cicer arietinum L.) based on morphological traits. Electron. J. Plant Breed. 8, 874–884 (2017).
Singh, B. K. et al. Pigmented radish (Raphanus sativus): Genetic variability, heritability and inter-relationships of total phenolics, anthocyanins and antioxidant activity. Indian J. Agric. Sci. 87, 1600–1606 (2017).
Lone, R. A. et al. Genetic variability and correlation studies in winter wheat (Triticum aestivum L.) germplasm for morphological and biochemical characters. Int. J. Pure Appl. Biosci. 5, 82–91. https://doi.org/10.18782/2320-7051.2489 (2017).
Fufa, N., Tsagaye, D., Ali, A., Wegayehu, G. & Fikre, D. Assessing genetic variability and heritability in garlic (Allium sativum L.) genotypes for bulb yield and related traits. Cross Curr. Int. J. Agric. Vet. Sci. 7, 1–8; https://doi.org/10.36344/ccijavs.2025.v07i01.001 (2025).
Manzoor, A. et al. Morphological characterization and analysis of genetic variability in radish (Raphanus sativus) genotypes for important qualitative and quantitative traits. Brazil. Arch. Biol. Technol. 67, e24230627. https://doi.org/10.1590/1678-4324-2024230627 (2024).
Lawal, B., Shittu, O. K., Oibiokpa, F. I. & Mohammed, H. African natural products with potential antioxidants and hepatoprotective properties: A review. Clin. Phytosci. 2, 23. https://doi.org/10.1186/s40816-016-0037-0 (2016).
Das, A. K. et al. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci. Technol. 99, 323–336. https://doi.org/10.1016/j.tifs.2020.03.010 (2020).
Zeng, Y. et al. Preventive and therapeutic role of functional ingredients of barley grass for chronic diseases in human beings. Oxidative Med. Cell. Longevity 2018, 3232080. https://doi.org/10.1155/2018/3232080 (2018).
Rolland, F., Moore, B. & Sheen, J. Sugar sensing and signaling in plants. Plant Cell 14, 185–205. https://doi.org/10.1105/tpc.010455 (2002).
Thomas, J. A., Jeffrey, A. C., Atsuko, K. & David, M. K. Regulating the proton budget of higher plant photosynthesis. Proc. Natl. Acad. Sci. USA 102, 9709–9713. https://doi.org/10.1073/pnas.0503952102 (2005).
Rodriguez-Saona, L. E., Giusti, M. M. & Wrolstad, R. E. Anthocyanin pigment composition of red-fleshed potatoes. J. Food Sci. 63, 458–465. https://doi.org/10.1111/j.1365-2621.1998.tb15764.x (1998).
Khoo, H. E., Azlan, A., Tang, S. T. & Lim, S. M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61, 1361779. https://doi.org/10.1080/16546628.2017.1361779 (2017).
Mezzomo, N. & Ferreira, S. R. Carotenoids functionality, sources, and processing by supercritical technology: A review. J. Chem. 2016, 3164312. https://doi.org/10.1155/2016/3164312 (2016).
Xiao, S. & Li, J. Study on functional components of functional food based on food vitamins. In Journal of Physics: Conference Series, Vol. 1549, No. 3, p. 032002 (IOP Publishing, 2020). https://doi.org/10.1088/1742-6596/1549/3/032002
Lutz, M., Fuentes, E., Ávila, F., Alarcón, M. & Palomo, I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 24, 366. https://doi.org/10.3390/molecules24020366 (2019).
Kurina, A. B., Kornyukhin, D. L., Solovyeva, A. E. & Artemyeva, A. M. Genetic diversity of phenotypic and biochemical traits in VIR radish (Raphanus sativus L.) germplasm collection. Plants 10, 1799 (2021).
Iloki-Assanga, S. B. et al. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC. Res. Notes 8(1), 396. https://doi.org/10.1186/s13104-015-1388-1 (2015).
Kuperman, F. M. & Kalacheva, L. I. The morphological and physiological classification of Raphanus sativus. Vestn. Sel’skokhozyaistvennoi Nauki 11, 37–43 (1972).
Lee, O. N. & Park, H. Y. Assessment of genetic diversity in cultivated radishes (Raphanus sativus) by agronomic traits and SSR markers. Sci. Hortic. 223, 19–30. https://doi.org/10.1016/j.scienta.2017.05.025 (2017).
Tsehaye, A., Fikre, A. & Bantayhu, M. Genetic variability and association analysis of Desi-type chickpea (Cicer arietinum L.) advanced lines under potential environment in North Gondar, Ethiopia. Cogent Food Agric. 6(1), 1806668. https://doi.org/10.1080/23311932.2020.1806668 (2020).
Singh, B. et al. Genetic association analysis in Asiatic radish (Raphanus sativus L.). Indian J. Plant Genet. Resour. 15, 121–124 (2002).
Singh, A. K., Ahmed, N. & Narayan, R. Genetic variability and characters association in radish under temperate conditions. Haryana J. Hort. Sci. 34, 346–384 (2005).
Ullah, M. Z., Hasan, M. J., Rahman, A. H. & Saki, A. I. Genetic variability, character association and path coefficient analysis in radish (Raphanus sativus L.). Agric. 8, 22–27. https://doi.org/10.3329/agric.v8i2.7573 (2010).
Yousuf, M., Ajmal, S. U., Munir, M. & Ghafoor, A. Genetic diversity analysis for agro-morphological and seed quality traits in rapeseed (Brassica campestris L.). Pak. J. Bot. 43, 1195–1203 (2011).
Huang, T. et al. Evaluation of genetic variation of morphological and clubroot-resistance traits of radish and metabonomic analysis of clubroot-resistant cultivar. Sci. Hortic. 321, 112272. https://doi.org/10.1016/j.scienta.2023.112272 (2023).
Mohammadi, S. A. & Prasanna, B. M. Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci. 43, 1235–1248. https://doi.org/10.2135/cropsci2003.1235 (2003).
Raihan, M. S. & Jahan, N. A. Genetic variability assessment in selected genotypes of radish (Raphanus sativus L.) using morphological markers. J. Res. Opinion 6, 2495–2501 (2019).
Ali, S. et al. Groundnut genotypes’ diversity assessment for yield and oil quality traits through multivariate analysis. SABRAO J. Breed. Genet. 54, 565–573. https://doi.org/10.54910/sabrao2022.54.3.9 (2022).
George, R. A. T. & Evans, D. R. A classification of winter radish cultivars. Euphytica 30, 483–492. https://doi.org/10.1007/BF00034013 (1981).
Saroj, R. et al. Unraveling the relationship between seed yield and yield-related traits in a diversity panel of Brassica juncea using multi-traits mixed model. Front. Plant Sci. 12, 651936. https://doi.org/10.3389/fpls.2021.651936 (2021).
Tudu, V. K., Kumar, A. & Rani, V. Assessment of genetic divergence in Indian mustard (Brassica juncea L. Czern. & Coss.) based on yield-attributing traits. J. Pharmacogn. Phytochem. 7(1S), 2093–2096. https://doi.org/10.3329/bjb.v50i1.52669 (2018).
Ahmad, R., Shah, M. K., Ibrar, D., Javaid, R. A. & Khan, N. Assessment of genetic divergence and its utilization in hybrid development in cultivated onion (Allium cepa L.). J. Anim. Plant Sci. 31, 175–187 (2021).
Hassan, Z. et al. Phenotypic characterization of exotic tomato germplasm: An excellent breeding resource. PLoS ONE 16, e0253557. https://doi.org/10.1371/journal.pone.0253557 (2021).
Wu, X. et al. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agri. Food Chem. 52(12), 4026–4037. https://doi.org/10.1021/jf049696w (2004).
Kallithraka, S., Mohdaly, A. A., Makris, D. P. & Kefalas, P. Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera): Association with antiradical activity. J. Food Compos. Anal. 18, 375–386. https://doi.org/10.1016/j.jfca.2004.02.010 (2005).
Zoecklein, B. W., Fugelsang, K. C., Gump, B. H. & Nury, F. S. Carbohydrates: reducing sugars. In Production Wine Analysis, pp. 114–128 (Springer, 1990). https://doi.org/10.1007/978-1-4615-8146-8_6
Khatri, D. & Chhetri, S. B. B. Reducing sugar, total phenolic content, and antioxidant potential of Nepalese plants. Biomed Res. Int. 2020, 7296859. https://doi.org/10.1155/2020/7296859 (2020).
Kar, P. K., Srivastava, P. P., Awasthi, A. K. & Urs, S. R. Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet. Genomes 4, 75–83. https://doi.org/10.1007/s11295-007-0089-x (2008).
Khodadadi, M., Dehghani, H., Fotokian, M. H. & Rain, B. Genetic diversity and heritability of chlorophyll content and photosynthetic indexes among some Iranian wheat genotypes. J. Biodiv. Environ. Sci. 4, 12–23 (2014).
Luximon-Ramma, A., Bahorun, T. & Crozier, A. Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J. Sci. Food Agric. 83, 496–502. https://doi.org/10.1002/jsfa.1365 (2003).
Pathak, R., Singh, M. & Henry, A. Genetic diversity and interrelationship among clusterbean (Cyamopsis tetragonoloba) genotypes for qualitative traits. Indian J. Agric. Sci. 81, 402–406 (2011).
Ebdon, J. S. & Gauch, H. G. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype × environment interaction. Crop Sci. 42, 489–496. https://doi.org/10.2135/cropsci2002.4890 (2002).
Mustapha, M. & Bakari, H. R. Statistical evaluation of genotype by environment interactions for grain yield in millet (Pennisetum glaucum (L.) R. Br.). Int. J. Eng. Sci. 3, 7–16 (2014).
Mohamed, M. Genotype by environment interactions for grain yield in bread wheat (Triticum aestivum L.). J. Plant Breed. Crop Sci. 5, 150–157. https://doi.org/10.5897/JPBCS2013.0390 (2013).
Strefeler, M. S. & Wehner, T. C. Comparison of six methods of multiple trait selection for fruit yield and quality traits in three fresh-market cucumber populations. J. Amer. Soc. Hort. Sci. 111, 792–798 (1986).
Mallikarjunarao, K., Singh, P. K., Vaidya, A., Pradhan, R. & Das, R. K. Genetic variability and selection parameters for different genotypes of radish (Raphanus sativus L.) under Kashmir valley. Ecol. Environ. Conserv. 21, 361–364 (2015).
Fayezizadeh, M. R., Ansari, N. A., Sourestani, M. M. & Hasanuzzaman, M. Biochemical compounds, antioxidant capacity, leaf color profile and yield of basil (Ocimum sp.) microgreens in floating system. Plants 12, 2652 (2023).
Milligan, S. B. & Kang, M. S. A mixed-model approach. In Crop Improvement: Challenges in the Twenty-First Century, p. 353 (Publisher—check edition; 2024).
Acknowledgements
We sincerely acknowledge Department of Horticulture, Sikkim University for extending the all the necessary facilities for conducting present study.
Funding
No funds, grants, or other support were received during the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
K.T. investigated, visualized and validated the research, curated data and written–original draft. R. K. conceptualized the methodology and supervised the research. K. K. done the formal analysis and handled the software. L. S. handled the software, and edited the manuscript. S. L. done the formal analysis, handled the software and edited the manuscript. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Tare, K., Kumar, R., Kaushik, K. et al. Multivariate and stability analysis for yield and biochemical traits in radish (Raphanus sativus L.) genotypes from Sikkim Himalaya for functional food applications. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38280-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38280-6


