Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Photoinduced proton transfer in differently structured water: an EPR approach to solving a classic problem
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

Photoinduced proton transfer in differently structured water: an EPR approach to solving a classic problem

  • Antonio Barbon1,
  • Anton Savitsky2,
  • Igor A. Grigoriev3,
  • Vladimir A. Reznikov3,
  • Igor A. Kirilyuk3,
  • Sofya Lushchekina4,
  • Ilia B. Moroz5,
  • Tamar Eliash5,
  • Noga Friedman5,
  • Mordehai Sheves5,
  • Raanan Carmieli6 &
  • …
  • Lev Weiner6,7 

Scientific Reports , Article number:  (2026) Cite this article

  • 525 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Biophysics
  • Chemistry

Abstract

The mechanism of proton transfer (PT), and how it is affected by water structure, is a fundamental issue in numerous chemical and biological processes. Formulated more than 200 years ago, a possible model for PT in aqueous media was proposed by Grotthuss, which continues to be actively studied and debated. In this study, we exploit electron paramagnetic resonance to investigate PT in aqueous solutions. Our proposed method employs pH-sensitive stable nitroxyl radicals and makes use of photolysis of 2-nitrobenzaldehyde to generate protons in the sub-nanosecond timescale. This approach was used to study the impact of classical chaotropic compounds on PT as studied in various aqueous solutions, i.e. 8 M urea, 6 M guanidine hydrochloride (Gdn·HCl), and potassium chloride (KCl). Our findings confirm significant impacts on PT rates. For instance, in 6 M Gdn·HCl, PT occurred 40-fold slower than in water. The method’s sensitivity to water structure is demonstrated, highlighting its potential for monitoring the kinetics of PT in ice and in proteins.

Similar content being viewed by others

Photoelectrochemical production of disinfectants from seawater

Article 28 March 2025

Computational engineering of water-soluble human potassium ion channels through QTY transformation

Article Open access 15 November 2024

State- and time-resolved observation of ultrafast intermolecular proton transfer in hydrated biomolecules

Article Open access 01 July 2025

Data availability

All data used in this article is available in the following link: [https://weizmann.elsevierpure.com/en/datasets/9a1ffc70-729c-432a-9202-e7f051309c7b] (https:/weizmann.elsevierpure.com/en/datasets/9a1ffc70-729c-432a-9202-e7f051309c7b).

References

  1. Bell, R. P. Proton in Chemistry (Chapman and Hall, 1973).

    Google Scholar 

  2. Eigen, M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Ed. 3, 1–19 (1964).

    Google Scholar 

  3. A. Müller, H. Ratajczak, W. Junge, E. Diemann (ed.s). Electron and proton transfer in chemistry and biology (Elsevier, 1992).

  4. Warshel, A., Papazyan, A. & Kollman, P. A. On low-barrier hydrogen bonds and enzyme catalysis. Science 269, 102–106 (1995).

    Google Scholar 

  5. De-Grotthuss, C. J. T. Sur la decomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique [On the decomposition of water and of solutes by electrical currents]. Ann. Chim. LVIII, 54–74, (1806).

  6. Hückel, E. Theorie der Beweglichkeit des Wasserstoff- und Hydroxylions in wasseriger Losung. Z. Elektrochem. Angew. Phys. Chem. 34, 546–566 (1928).

    Google Scholar 

  7. Bernal, J. D. & Fowler, R. H. A theory of water and ionic solution with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

    Google Scholar 

  8. Eigen, M. & DeMaeyer, L. Self-dissociation and protonic charge transport in water and ice. Proc. R. Soc. Lond. A247, 505–533 (1958).

    Google Scholar 

  9. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

    Google Scholar 

  10. George, M. V. & Scaiano, J. C. Photochemistry of o-nitrobenzaldehyde and related studies. J. Phys. Chem. 84, 492–495 (1980).

    Google Scholar 

  11. Edward, S. G., Karen, R. & Cort, A. Nitrobenzaldehyde as a chemical actinometer for solution and ice photochemistry. J. Photochem. Photobiol. A Chemistry 209, 186–192 (2010).

    Google Scholar 

  12. Kohse, S., Neubauer, A., Pazidis, A., Lochbrunner, S. & Kragl, U. Photoswitching of Enzyme Activity by Laser-Induced pH Jump. J. Am. Chem. Soc. 135, 9407–9411 (2013).

    Google Scholar 

  13. Khramtsov, V. V., Weiner, L. M., Grigoriev, I. A. & Volodarsky, L. B. Proton exchange in stable nitroxyl radicals. EPR study of the pH of aqueous solutions. Chem. Phys. Lett. 91, 69–72 (1982).

    Google Scholar 

  14. Keana, J. F. W., Acarregui, M. J. & Boyle, S. L. M. 2,2-Disubstituted-4,4-dimethylimidazolidinyl-3-oxy nitroxides: indicators of aqueous acidity through variation of an with pH. J. Am. Chem. Soc. 104, 827–830 (1982).

    Google Scholar 

  15. V.V. Khramtsov, L. M. Weiner, Proton exchange in stable nitroxyl radicals: pH-sensitive spin probes. In Volodarsky L.B. (ed.). Imidazoline Nitroxides, pp.37–80 (CRS Press, 1988).

  16. V.V. Khramtsov, L. B. Volodarsky. Use of imidazoline nitroxides in studies of chemical reactions. ESR measurements of the concentration and reactivity of protons, thiols, and nitric oxide. Biol. Magn. Res. 1998, 14, 109–180

  17. Weiner, L. M. Stable nitroxyl radicals as pH, thiol and electron transfer probes. Appl. Magn. Res. 31, 357–373 (2007).

    Google Scholar 

  18. Barbon, A., Bortolus, M., Isse, A. A., Reznikov, V. A. & Weiner, L. Electron transfer in pH-sensitive nitroxide radicals. Chem. Phys. Lett. 665, 137–140 (2016).

    Google Scholar 

  19. Khramtsov, V. V. et al. Proton exchange in stable nitroxyl radicals of the imidazoline and imidazolidine series. J. Magn. Res. 61, 397–408 (1985).

    Google Scholar 

  20. Improta, R., Scalmani, G. & Barone, V. Quantum mechanical prediction of the magnetic titration curve of a nitroxide spin probe. Chem. Phys. Lett. 336, 349–356 (2001).

    Google Scholar 

  21. Improta, R. & Barone, V. Interplay of electronic, environmental, and vibrational effects in determining the hyperfine coupling constants of organic free radicals. Chem. Rev. 104, 1231–1254 (2004).

    Google Scholar 

  22. Leberman, R. & Soper, A. Effect of high salt concentrations on water structure. Nature 378, 364–366 (1995).

    Google Scholar 

  23. Hribar, B., Southall, N. T., Vlachy, V. & K. A.,. Dill How ions affect the structure of water. J. Am. Chem. Soc. 124, 12302–12311 (2002).

    Google Scholar 

  24. Marcus, Y. Effect of Ions on the structure of water: Structure making and breaking. Chem. Rev. 109, 1346–1370 (2012).

    Google Scholar 

  25. LoNostro, P. & Ninham, P. W. Hofmeister phenomena: An update on ion specificity in biology. Chem. Rev. 112, 2286–2322 (2012).

    Google Scholar 

  26. A.K Soper, E.W Castner, Jr. A. Luzar, Impact of urea on water structure: a clue to its properties as a denaturant? Biophys. Chem. 2003, 105, 649–666

  27. Rezus, Y. L. A. & Bakker, H. J. Effect of urea on the structural dynamics of water. Proc. Natl. Acad. Sci. 103, 18417–18420 (2006).

    Google Scholar 

  28. Mason, P. E. et al. The Structure of aqueous guanidinium chloride solution. J. Am. Chem. Soc. 126, 11462–11470 (2004).

    Google Scholar 

  29. Scott, J. N., Nucci, N. V. & Vanderkooi, J. M. Changes in water structure induced by the guanidinium cation and implications for protein denaturation. J. Phys. Chem. A. 112, 10939–10948 (2008).

    Google Scholar 

  30. Vanzi, F., Madan, B. & Sharp, K. Effect of the protein denaturants urea and guanidinium on water structure: A Structural and thermodynamic study. J. Am. Chem. Soc. 120, 10748–10750 (1998).

    Google Scholar 

  31. Ki Lim, W., Rösgen, J. & Englander, S. W. Urea, but not guanidinium, destabilizes proteins4 by forming hydrogen bonds to the peptide group. Proc. Natl. Acad. Sci. 106, 2595–2600 (2009).

    Google Scholar 

  32. Murata, K. & Tanaka, H. Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture. Nat. Mater. 11, 436–443 (2012).

    Google Scholar 

  33. Popov, I., Greenbaum, A., Sokolov, A. P. & Feldman, Y. The puzzling first-order phase transition in water-glycerol mixtures. Phys. Chem. Chem. Phys. 17, 18063–18071 (2015).

    Google Scholar 

  34. V.F. Petrenko, R.W. Whitworth, Physics of Ice. (, Oxford University Press, Oxford, 1999)

  35. Lee, D. H. & Kang, H. Proton transport and related chemical processes of ice. J. Phys. Chem. B. 125, 8270–8281 (2021).

    Google Scholar 

  36. Kobayashi, C., Saito, S. & Ohmine, I. Mechanism of fast proton transfer in ice: Potential energy surface and reaction coordinate analyses. J. Chem. Phys. 113, 9090–9100 (2000).

    Google Scholar 

  37. Salna, B., Benabbas, A., Sage, J. T., van Thor, J. & Champion, P. M. Wide-dynamic-range kinetic investigations of deep proton tunnelling in proteins. Nat. Chem. 8, 874–880 (2016).

    Google Scholar 

  38. Li, X. Z., Walker, B. & Michaelides, A. Quantum Nature of the hydrogen bond. Proc. Natl. Acad. Sci. 108, 6369–6373 (2011).

    Google Scholar 

  39. Guo, J. et al. Nuclear Quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 352, 321–325 (2016).

    Google Scholar 

  40. Wang, L., Fried, S. D., Boxer, S. G. & Markland, T. E. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site. Proc. Natl. Acad. Sci. 111, 18454–18459 (2014).

    Google Scholar 

  41. Krishtalik, L. I. The mechanism of the proton transfer: An outline. Biochim. Biophys. Acta. 1458, 6–279 (2000).

    Google Scholar 

  42. Freier, E., Wolf, S. & Gerwert, K. Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc. Natl. Acad. Sci 108, 11435–11439 (2011).

    Google Scholar 

  43. Aqvist, J. & Warshel, A. Computer simulation of the initial proton transfer step in human carbonic anhydrase I. J. Mol. Biol. 224, 7–14 (1992).

    Google Scholar 

  44. Altenbach, C., Marti, T., Khorana, H. G. & Hubbell, W. L. Transmembrane protein structure: Spin labeling of bacteriorhodopsin mutants. Science 248, 1088–1092 (1990).

    Google Scholar 

  45. Steinhoff, H. J. et al. Resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science 266, 105–107 (1994).

    Google Scholar 

  46. Eliash, T., Weiner, L., Ottolenghi, M. & Sheves, M. Specific binding sites for cations in bacteriorhodopsin. Biophys. J. 81, 1155–1162 (2001).

    Google Scholar 

  47. Khorana, H. G. et al. Amino acid sequence of bacteriorhodopsin Proc. Natl. Acad. Sci. 76, 5046–5050 (1979).

    Google Scholar 

  48. Gray, H. B. & Winkler, J. R. Electron tunneling through proteins. Q. Rev. Biophys. 36, 341–372 (2003).

    Google Scholar 

  49. Eliash, T. et al. Nitroxyl radicals for studying electron transfer. Angew. Chem Int. Ed. Engl. 52, 8689–8692 (2013).

    Google Scholar 

  50. Schmallegger, M. et al. Systematic quantification of electron transfer in a bare phospholipid membrane using nitroxide-labeled stearic acids: Distance dependence, kinetics And Activation Parameters. Langmuir 36, 10429–10437 (2020).

    Google Scholar 

  51. Hammes-Schiffer, S. & Stuchebrukhov, A. A. Theory of coupled electron and proton transfer. Chem. Rev. 110, 6939–6960 (2010).

    Google Scholar 

  52. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    Google Scholar 

  53. Tyburski, R., Liu, T., Glover, S. D. & Hammarström, L. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 143, 560–576 (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Chemical Sciences, University of Padova, Padova, Italy

    Antonio Barbon

  2. Max Planck Institute for Chemical Energy Conversion, Mülheim an Der Ruhr, Germany

    Anton Savitsky

  3. Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia

    Igor A. Grigoriev, Vladimir A. Reznikov & Igor A. Kirilyuk

  4. Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel

    Sofya Lushchekina

  5. Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel

    Ilia B. Moroz, Tamar Eliash, Noga Friedman & Mordehai Sheves

  6. Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel

    Raanan Carmieli & Lev Weiner

  7. Department of Brain Research, Weizmann Institute of Science, Rehovot, Israel

    Lev Weiner

Authors
  1. Antonio Barbon
    View author publications

    Search author on:PubMed Google Scholar

  2. Anton Savitsky
    View author publications

    Search author on:PubMed Google Scholar

  3. Igor A. Grigoriev
    View author publications

    Search author on:PubMed Google Scholar

  4. Vladimir A. Reznikov
    View author publications

    Search author on:PubMed Google Scholar

  5. Igor A. Kirilyuk
    View author publications

    Search author on:PubMed Google Scholar

  6. Sofya Lushchekina
    View author publications

    Search author on:PubMed Google Scholar

  7. Ilia B. Moroz
    View author publications

    Search author on:PubMed Google Scholar

  8. Tamar Eliash
    View author publications

    Search author on:PubMed Google Scholar

  9. Noga Friedman
    View author publications

    Search author on:PubMed Google Scholar

  10. Mordehai Sheves
    View author publications

    Search author on:PubMed Google Scholar

  11. Raanan Carmieli
    View author publications

    Search author on:PubMed Google Scholar

  12. Lev Weiner
    View author publications

    Search author on:PubMed Google Scholar

Contributions

I.A.G., V.R., and I.K. did the synthesis, purification and characterization of used nitroxyl stable radicals. A.S. did the measurements and interpretation of PT at high field EPR spectrometer in ice. S.L. did molecular dynamic simulation. I.M. did determination of pK values of R2 in 6 M Gdn·HCl and 8 M urea. M.S. and T.E. did the spin labeling of mutants of bacteriorhodopsin and measurements PT in protein. N.F. did UV kinetics of photolysis of 2-NBA at different conditions. A.B. did time resolved experiments of R4 and R4 pK determination in Gdn·HCl solution. R.C. and L.W. did CW EPR investigation of kinetics of samples acidification at 2-NBA photolysis. A.B., M.S., R.C. and L.W. did the writing and editing of the manuscript. A.B. and L.W. conceptualization, supervision.

Corresponding authors

Correspondence to Antonio Barbon or Lev Weiner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbon, A., Savitsky, A., Grigoriev, I. et al. Photoinduced proton transfer in differently structured water: an EPR approach to solving a classic problem. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38650-0

Download citation

  • Received: 09 September 2025

  • Accepted: 30 January 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38650-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing