Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Design and implementation of an open-access arsenic biosensor
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 07 February 2026

Design and implementation of an open-access arsenic biosensor

  • Javier Gasulla1,3,
  • Adrian I. Teijeiro2,
  • Ezequiel J. Alba Posse1,3 &
  • …
  • Alejandro D. Nadra1,3 

Scientific Reports , Article number:  (2026) Cite this article

  • 675 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biological techniques
  • Biotechnology
  • Environmental sciences
  • Microbiology

Abstract

Arsenic contamination in groundwater is a critical global issue, affecting over 140 million people worldwide and posing severe public health risks, particularly in low-resource and rural communities. Argentina alone has approximately 4 million people exposed to arsenic. The measurement of arsenic in private wells is often limited by high costs, specialized personnel requirements, and geographical distances to analytical laboratories. In this paper, we describe the design and implementation of a portable, open-access arsenic biosensor that combines synthetic biology and industrial design. The biosensor employs genetically modified Escherichia coli and a colorimetric readout to detect arsenic concentrations as low as 5 µg/L. Validation studies on 61 samples yielded a sensitivity of 98.1% and specificity of 99.0%. By using paper-based, dehydrated bacterial modules and a 3D-printed housing, this device is cost-effective, easy to use, and amenable to replication in low-resource settings. In addition, the open-access approach ensures that critical knowledge such as plasmid sequences, device schematics, and protocols can be freely shared and locally adapted. Beyond the technical advantages, this biosensor can potentially influence global policies and Argentinian programs on water quality monitoring, empowering communities to take charge of arsenic surveillance and safeguard public health.

Data availability

All relevant data supporting the findings of this study are provided within the manuscript and its Supplementary Information files. Additional raw data (images, colorimetric outputs, Python scripts, and 3D design files) are openly available at GitHub SensAr-Biosensor under license CC-BY 4.0.

References

  1. Third edition. Laboratory biosafety manual. https://iris.who.int/bitstream/handle/10665/42981/9241546506_eng.pdf

  2. United Natios. General Assembly United Nations. Sixty-fourth session Agenda item. https://documents.un.org/doc/undoc/gen/n09/479/35/pdf/n0947935.pdf

  3. World Health Organization. Progress on drinking water, sanitation and hygiene in schools. https://cdn.who.int/media/docs/default-source/wash-documents/wash-in-schools_21june_launch.pdf?sfvrsn=565e89cd_3&download=true

  4. Water and the global climate crisis: 10 things you should know. https://www.unicef.org/stories/water-and-climate-change-10-things-you-should-know

  5. 1 in 3 people globally do not have access to safe drinking water – UNICEF & WHO., https://www.who.int/news/item/18-06-2019-1-in-3-people-globally-do-not-have-access-to-safe-drinking-water-unicef-who

  6. Bhattacharya, P., Polya, D. & Jovanovic, D. Best Practice Guide on the Control of Arsenic in Drinking Water (IWA Publishing, 2017).

  7. Relationship between low. -level arsenic exposure in drinking water and kidney cancer risk in Texas. Environ. Pollut. 363, 125097 (2024).

    Google Scholar 

  8. Rahmani, A. et al. The association of arsenic exposure with mortality due to cancer, diabetes, alzheimer’s and congenital anomalies using Poisson regression. Sci. Rep. 13, 15456 (2023).

    Google Scholar 

  9. Sadee, B. A., Zebari, S. M. S., Galali, Y. & Saleem, M. F. A review on arsenic contamination in drinking water: sources, health impacts, and remediation approaches. RSC Adv. 15, 2684–2703 (2025).

    Google Scholar 

  10. Bardach, A. E. et al. Epidemiology of chronic disease related to arsenic in argentina: A systematic review. Sci. Total Environ. 538, 802–816 (2015).

    Google Scholar 

  11. Litter, M. I., Armienta, M. A., Estrada, V., Lepori, R. E. V. & Olmos, V. E. C. Arsenic in Latin America: Part II. in Arsenic in Drinking Water and Food 113–182 (Springer Singapore, Singapore, 2020).

  12. Litter, M. I., Armienta, M. A., Estrada, R. E. V., Lepori, E. C. V. & Olmos, V. Arsenic in Drinking Water and Food (Springer Singapore, 2020).

  13. Arsenic exposure of child populations in Northern Argentina. Sci. Total Environ. 669, 1–6 (2019).

    Google Scholar 

  14. Concha, G., Nermell, B. & Vahter, M. V. Metabolism of inorganic arsenic in children with chronic high arsenic exposure in Northern Argentina. Environ. Health Perspect. https://doi.org/10.1289/ehp.98106355 (1998).

    Google Scholar 

  15. Navoni, J. A., De Pietri, D., Garcia, S. & Lepori, E. C. V. Riesgo sanitario de La población vulnerable expuesta al arsénico En La provincia de Buenos Aires, Argentina. Revista Panam. De Salud Publica/Pan Am. J. Public. Health. 31, 1–8 (2012).

    Google Scholar 

  16. Red de Seguridad Alimentaria. ARSÉNICO EN AGUA (Consejo Nacional de Investigaciones Científicas y Técnicas, 2018).

  17. ITBA. Mapa de arsénico en Argentina. https://mapa-de-arsenico.web.app/

  18. Nonna, S. Epidemiología del hidroarsenicismo crónico regional endémico en la república argentina. (Asociación Toxicológica Argentina, https://www.argentina.gob.ar/sites/default/files/2006_epidemiologia_del_hacre_en_argentina.pdf (2006).

  19. Rodriguez, G. M. & E., de G. P. Cartografía de radios censales de Argentina corregidos, completados y estandarizados de 1991, 2010 y 2022. (2001).

  20. Instituto Nacional de Estadísitca y Censo (INDEC). Base de datos de Asentamientos humanos de la República Argentina. http://www.bahra.gob.ar/

  21. American Public Health Association. 3500-AS ARSENIC Standard Methods for the Examination of Water and Wastewater, 24th (American Public Health Association, 2023).

  22. Dynamics of arsenic in. Agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci. Total Environ. 379, 180–189 (2007).

    Google Scholar 

  23. George, C. M. et al. Evaluation of an arsenic test kit for rapid well screening in Bangladesh. (2012). https://doi.org/10.1021/es300253p

  24. Bhat, A., Hara, T. O., Tian, F. & Singh, B. Review of analytical techniques for arsenic detection and determination in drinking water. Env Sci. Adv. https://doi.org/10.1039/d2va00218c (2023).

    Google Scholar 

  25. Hui, C. Y., Liu, M. Q. & Guo, Y. Synthetic bacteria designed using Ars operons: a promising solution for Arsenic biosensing and bioremediation. World J. Microbiol. Biotechnol. 40, 192 (2024).

    Google Scholar 

  26. Kaur, H., Kumar, R., Babu, J. N. & Mittal, S. Advances in arsenic biosensor development - a comprehensive review. Biosens. Bioelectron. 63, 533–545 (2015).

    Google Scholar 

  27. He, Y. et al. A critical review of on-site inorganic arsenic screening methods. J. Environ. Sci. 125, 453–469 (2023).

    Google Scholar 

  28. Barone, F. et al. Design and evaluation of an incoherent feed-forward loop for an arsenic biosensor based on standard iGEM parts. Synth Biol 2, 1–10 (2017).

  29. Nadra AD, et al. Design, implementation, re-design, re-implementation... of a biosensor. Soc Iberoamericana Gráfica Digital Blucher Design Proc. (2016) 3, 921–925 (2016).

  30. Stocker, J. et al. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ. Sci. Technol. 37, 4743–4750 (2003).

    Google Scholar 

  31. Siegfried, K. et al. Introducing simple detection of bioavailable arsenic at Rafaela (Santa Fe Province, Argentina) using the ARSOlux biosensor. Int. J. Environ. Res. Public. Health. 12, 5465–5482 (2015).

    Google Scholar 

  32. Bradski, G. R. & Kaehler, A. Learning OpenCV (O’Reilly Media, 2015).

  33. Zabala, M. E. et al. Hydrological dataset of a sub-humid continental plain basin (Buenos Aires, Argentina). Data Brief. 33, 106400 (2020).

    Google Scholar 

  34. López, M. I., Callao, M. P. & Ruisánchez, I. A tutorial on the validation of qualitative methods: from the univariate to the multivariate approach. Anal. Chim. Acta. 891, 62–72 (2015).

    Google Scholar 

  35. World Health Organization. Arsenic Fact sheet. https://www.who.int/news-room/fact-sheets/detail/arsenic

  36. Ley 18284. Bebidas hídricas, agua y agua gasificada. in Codigo Alimentario Argentino. (2025).

  37. Maity, S., Dokania, P., Goenka, M., Patil, P. B. & Sarkar, A. Health-risk assessment of groundwater arsenic levels in Bhagalpur, India, and development of a cost‐effective paper‐based arsenic testing‐kit. CLEAN–Soil Air Water 53(1), e202300291 (2025).

  38. Sahu, B. et al. A simple and cost-effective paper-based and colorimetric dual-mode detection of arsenic(iii) and lead(ii) based on glucose-functionalized gold nanoparticles. RSC Adv. 11, 20769–20780 (2021).

    Google Scholar 

  39. Inorganic arsenic speciation in. Water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal. Chim. Acta. 585, 312–322 (2007).

    Google Scholar 

  40. Jayakumar, N. et al. Antimony and arsenic detection: review on electrochemical biosensors and their applications. Water Pract. Technol. 19, 4062–4090 (2024).

    Google Scholar 

  41. Zhang, X. et al. Whole-cell bioreporter technology: a promising approach for environmental risk assessment of as contamination in soil. Front. Microbiol. 15, 1494872 (2024).

    Google Scholar 

  42. Litter, M. I. et al. Arsenic in argentina: Occurrence, human health, legislation and determination. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.04.262 (2019).

    Google Scholar 

  43. Fecher, B., Friesike, S., Hebing, M. & Linek, S. A reputation economy: how individual reward considerations Trump systemic arguments for open access to data. Palgrave Commun. 3, 1–10 (2017).

    Google Scholar 

  44. Pearce, J. M. Building research equipment with Free, Open-Source hardware. Science https://doi.org/10.1126/science.1228183 (2012).

    Google Scholar 

  45. Bezuidenhout, L. M., Leonelli, S., Kelly, A. H. & Rappert, B. Beyond the digital divide: towards a situated approach to open data. Sci. Public. Policy. 44, 464–475 (2017).

    Google Scholar 

  46. Dias, A. et al. PlomBOX: a low cost bioassay for the sensitive detection of lead in drinking water. Commun. Eng. 4, 2 (2025).

    Google Scholar 

  47. Nadra, A. D. Navigating tensions between public and commercial interests: a case study of open source biosensors for detecting water contaminants in Argentina. Front. Med. (Lausanne). 11, 1268950 (2024).

    Google Scholar 

Download references

Acknowledgements

Since the inception of this project at the end of 2012, many individuals and institutions have contributed. We thank B. Basanta, H. Bonomi, N. Carlotto, M. Giménez, A. Grande, N. Nieto Moreno, F. Barone, F. Dorr, L. Marasco, S. Mildiner, I. Patop, S. Sosa, L. Vattino, and F. Vignale for initial steps in designing the biological components. We also acknowledge Romina Mathieu and Luciana Feo Mourelle for early physical prototypes. Special thanks to I. Patop, S. Sosa, and F. Vignale for pushing the project to receive the “Innovative Product” Prize at the Argentinian Innovation Contest Innovar 2014.We are grateful to the Facultad de Ciencias Exactas y Naturales (University of Buenos Aires) and GarageLab for providing the foundational environment. This project was supported by the Ministry of Science and Technology (MINCyT), the Ministry of Education (SPU), ANPCYT (PICT-2015-3834), Universidad de Buenos Aires (PDE 24, 2024), and numerous contributors to our crowdfunding campaign on idea.me. We also thank Dr. J.R. Van der Meer and Dr. Vladimir Sentchilo for providing the ArsR plasmids and A. Rossen, L. Sierra and M.E. Zabala from INA and IHLLA for sharing samples and data of their water campaigns. Finally, we acknowledge Prof. Verónica Liñares for assistance in translating sections of the article.

Funding

Agencia Nacional de Promoción Científica y Tecnológica (PICT-2015-3834); Universidad de Buenos Aires (PDE 24, 2024).

Author information

Authors and Affiliations

  1. Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional, Universidad de Buenos Aires, Buenos Aires, Argentina

    Javier Gasulla, Ezequiel J. Alba Posse & Alejandro D. Nadra

  2. Facultad de Arquitectura, Diseño y Urbanismo, Universidad de Buenos Aires, Cátedra Louzau, Buenos Aires, Argentina

    Adrian I. Teijeiro

  3. CONICET, Buenos Aires, Argentina

    Javier Gasulla, Ezequiel J. Alba Posse & Alejandro D. Nadra

Authors
  1. Javier Gasulla
    View author publications

    Search author on:PubMed Google Scholar

  2. Adrian I. Teijeiro
    View author publications

    Search author on:PubMed Google Scholar

  3. Ezequiel J. Alba Posse
    View author publications

    Search author on:PubMed Google Scholar

  4. Alejandro D. Nadra
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: A.D. Nadra, J. Gasulla. Methodology and Investigation: J. Gasulla, E. Alba Posse, A. Teijeiro. Visualization: A. Teijeiro, J. Gasulla, E. Alba Posse. Supervision, Project Administration and Funding Acquisition: A.D. Nadra. Writing Original Draft: A.D. Nadra. Writing Review & Editing : All authors.

Corresponding author

Correspondence to Alejandro D. Nadra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Open hardware documentation

STL files, CAD designs, Plasmid sequence, and instructions for printing/assembly are available at GitHub SensAr-Biosensor. Physical plasmid can be requested in Addgene 240494.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasulla, J., Teijeiro, A.I., Alba Posse, E.J. et al. Design and implementation of an open-access arsenic biosensor. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38693-3

Download citation

  • Received: 23 July 2025

  • Accepted: 30 January 2026

  • Published: 07 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38693-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Arsenic
  • Biosensor
  • Groundwater monitoring
  • Whole cell
  • Colorimetric detection
  • E. coli whole-cell biosensor
  • Open source hardware
  • µPAD
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research