Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
RHA/TiO2-[bip]-NH2+NO3− as an efficient catalyst for the solvent-free synthesis of 1,8-dioxo-decahydroacridine and 2,3-dihydroquinazolin-4(1H)-one derivatives
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 February 2026

RHA/TiO2-[bip]-NH2+NO3− as an efficient catalyst for the solvent-free synthesis of 1,8-dioxo-decahydroacridine and 2,3-dihydroquinazolin-4(1H)-one derivatives

  • Fatemeh Aloueian1,
  • Farhad Shirini2,
  • Mohammad Gholinejad1 &
  • …
  • José M. Sansano3 

Scientific Reports , Article number:  (2026) Cite this article

  • 273 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Materials science

Abstract

In this study, a novel heterogeneous catalyst with the selected formula of RHA/TiO2-[bip]-NH2+NO3− was successfully synthesized and characterized, using of various techniques, including FT-IR, ¹H NMR, ¹³C NMR, TEM, XRD, XPS, TGA, EDX, and SEM mapping. The catalytic performance of this material was then evaluated in the synthesis of 1,8-dioxo-decahydroacridine and 2,3-dihydroquinazolin-4(1H)-one derivatives. The products were formed in very short reaction times under solvent-free conditions with excellent yields. In addition, the reusability of the catalyst was investigated, confirming its stability for at least five consecutive runs and also its ability to use in green and sustainable synthetic processes.

Similar content being viewed by others

Efficient synthesis of novel thiadiazolo[2,3-b]quinazolin-6-ones catalyzed by diphenhydramine hydrochloride-CoCl2⋅6H2O deep eutectic solvent

Article Open access 16 January 2024

Synthesis of N-heterocycles through alcohol dehydrogenative coupling

Article 22 August 2024

Accelerated synthesis of 3-dihydroquinazolin-4(1H)-one derivatives using nano-SiO2-SO3H as an efficient acidic catalyst

Article Open access 12 May 2025

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

  1. Shen, X., Hong, G. & Wang, L. Recent advances in green multi-component reactions for heterocyclic compound construction. Org. Biomol. Chem. 23, 2059–2078 (2025).

    Google Scholar 

  2. Tandi, M., Sharma, V., Gopal, B. & Sundriyal, S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: a recent update and chemical space analysis of the scaffolds. RSC Adv. 15, 1447–1489 (2025).

    Google Scholar 

  3. Mohlala, R. L., Rashamuse, T. J. & Coyanis, E. M. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: a tremendous growth in the past 5 years. Front Chem 12, (2024).

  4. Zhang, X., Lu, X., Zhang, P., Dai, M. & Liang, T. Recent advances in the multicomponent reactions of Indoles. Eur. J. Org. Chem. 28, e202401446 (2025).

    Google Scholar 

  5. Carvalho, M. et al. Enhancing efficiency and sustainability: unleashing the potential of continuous flow in multicomponent reactions. ChemSusChem 18, e202401840 (2025).

    Google Scholar 

  6. Ingale, A. A., Kagne, R. P., Ghanwat, V. B. & Sargar, A. M. ZrO2 as an efficient heterogeneous catalyst for the synthesis of 2-benzylidene malononitrile derivatives via Knoevenagel condensation. Interactions 246, 94 (2025).

    Google Scholar 

  7. Ingale, A. A., Kagne, R. P., Topkar, R. R., Kulal, S. R. & Sargar, A. M. LaCoO3/Co3O4 catalyzed synthesis of tetrahydro benzo[b]pyran derivatives and their in vitro, in Silico anticancer evaluation. J. Indian Chem. Soc. 102, 102230 (2025).

    Google Scholar 

  8. Chahar, M. et al. Recent advances in the synthesis of nitrogen-containing heterocyclic compounds via multicomponent reaction and their emerging biological applications: a review. J. Iran. Chem. Soc. 22, 1–33 (2025).

    Google Scholar 

  9. Liu, J. et al. Recent advances in the synthesis of nitrogen heterocycles via Rh(III)-catalyzed chelation-assisted C–H activation/annulation with Diazo compounds. Org. Chem. Front. 12, 3065–3106 (2025).

    Google Scholar 

  10. Nguyen, H. T., Nguyen, T. T., Doan, V. T. C., Nguyen, T. H. & Tran, M. H. Recent advances in metal-free catalysts for the synthesis of N-heterocyclic frameworks focusing on 5- and 6-membered rings: a review. RSC Adv. 15, 9676–9755 (2025).

    Google Scholar 

  11. Ha, H. J. Recent advances in synthesizing and utilizing nitrogen-containing heterocycles. Front Chem 11, (2023).

  12. Maity, P. & Mitra, A. K. Ionic liquid-assisted approaches in the synthesis of nitrogen-containing heterocycles: A focus on 3- to 6-membered rings. J. Ion Liq. 5, 100146 (2025).

    Google Scholar 

  13. Wong, X. K. & Yeong, K. Y. A patent review on the current developments of Benzoxazoles in drug discovery. ChemMedChem 16, 3237–3262 (2021).

    Google Scholar 

  14. Faizan, M. et al. Hantzsch reaction: the important key for pyridine/dihydropyridine synthesis. Synth. Commun. 54, 1221–1244 (2024).

    Google Scholar 

  15. Lavanya, G. et al. Recent Advances in the Synthesis of Dihydropyridine and Their Corresponding Fused Systems via Multi-Component Hantzsch Reaction Using Catalytic Nanomaterials. ChemistrySelect 9, e202403664 (2024).

  16. Alvim, H. G. O., Júnior, E. N. S. & Neto, B. A. D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, passerini and Ugi MCRs. RSC Adv. 4, 54282–54299 (2014).

    Google Scholar 

  17. Liu, G., Pan, R., Wei, Y. & Tao, L. The Hantzsch reaction in polymer chemistry: from synthetic methods to applications. Macromolecular Rapid Commun. 42, 2000459 (2021).

    Google Scholar 

  18. Badolato, M., Aiello, F. & Neamati, N. 2,3-Dihydroquinazolin-4(1H)-one as a privileged scaffold in drug design. RSC Adv. 8, 20894–20921 (2018).

    Google Scholar 

  19. Zhang, X., Pang, Q., Liu, D. & Zhang, G. Selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and their N1-substituted analogues via Pd(II)-catalyzed cascade annulation of o-aminobenzoic acids with CO, ammonium acetate and aldehydes. Tetrahedron 155, 133915 (2024).

    Google Scholar 

  20. Rijwan, Kumar, S. & Kumar, S. Green and sustainable approaches in the synthesis of pharmaceutically relevant Quinazolinones. Tetrahedron 172, 134437 (2025).

    Google Scholar 

  21. Deng, Z. et al. Quinazolinones as potential anticancer agents: synthesis and action mechanisms. Biomolecules 15, 210 (2025).

    Google Scholar 

  22. Pele, R. et al. Antioxidant and cytotoxic activity of new polyphenolic derivatives of Quinazolin-4(3H)-one: synthesis and in vitro activities evaluation. Pharmaceutics 15, 136 (2022).

    Google Scholar 

  23. Amarasekara, A. S. Acidic ionic liquids. Chem. Rev. 116, 6133–6183 (2016).

    Google Scholar 

  24. Sarkar, A. & Pandey, S. Applications of ionic liquids in green catalysis: A review of recent efforts. Curr Catal 10, 165–178 .

  25. Zhu, M. Ionic-liquid/metal–organic-framework composites: synthesis and emerging sustainable applications. Inorg. Chem. Front. 12, 39–84 (2025).

    Google Scholar 

  26. Wang, P. & Wang, R. Ionic Liquid-Catalyzed CO2 conversion for valuable chemicals. Molecules 29, 3805 (2024).

    Google Scholar 

  27. Qi, Z. et al. Challenges and perspectives on using acidic ionic liquids for biodiesel production via reactive distillation. Green. Chem. 26, 7718–7731 (2024).

    Google Scholar 

  28. Salas, R. et al. Ionic liquids in polymer technology. Green. Chem. 27, 1620–1651 (2025).

    Google Scholar 

  29. Zhang, Q. et al. Recent advances in supported acid/base ionic liquids as catalysts for biodiesel production. Front. Chem. 10, 999607 (2022).

    Google Scholar 

  30. Lu, Q. et al. MCM-41 supported quaternary ammonium ionic liquids as an effective heterogeneous catalyst for CO2 cycloaddition reaction. J. Porous Mater. 31, 897–912 (2024).

    Google Scholar 

  31. Tavera-Méndez, C. L. et al. Self-Assembled supported ionic liquids. Chem. - Eur. J. 30, e202303673 (2024).

    Google Scholar 

  32. Ingale, A. A., Kagne, R. P. & Sargar, A. M. NiFe2O4@PPA-DABCO: A novel magnetically separable bifunctional nanocatalyst for the synthesis of 2,2´-(Arylmethylene) bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives. J. Nanopart. Res. 27, 77 (2025).

    Google Scholar 

  33. Mazloumi, M. & Shirini, F. Nano rice husk Ash modified with acidic ionic liquid bridge: an efficient promoter for the synthesis of 1,2,4-Triazolo Quinazolinones. Poly Arom Comp. 43, 8171–8185 (2023).

    Google Scholar 

  34. Mazloumi, M., Shirini, F., Goli-Jolodar, O. & Seddighi, M. Nanoporous TiO2 containing an ionic liquid Bridge as an efficient and reusable catalyst for the synthesis of N, N′-diarylformamidines, benzoxazoles, benzothiazoles and benzimidazoles. New. J. Chem. 42, 5742–5752 (2018).

    Google Scholar 

  35. Vesoloski, J. F. et al. Immobilization of lipase from Candida Antarctica B (CALB) by Sol-Gel technique using rice husk Ash as silica source and ionic liquid as additive. Appl. Biochem. Biotechnol. 194, 6270–6286 (2022).

    Google Scholar 

  36. Nasir, I. et al. A review of rice husk silica as a heterogeneous catalyst support. J. Met. Mater. Min. 31, 1–12 (2021).

    Google Scholar 

  37. Zhao, Z., Jin, X., Liang, Y., Wang, L. M. & Liu, Y. D. TiO2 nanoparticles Dual-Modified with ionic liquid and acetic acid for use as electrorheological materials to achieve ultrahigh and stable electroresponsive performances. ACS Appl. Nano Mater. 5, 17928–17938 (2022).

    Google Scholar 

  38. Balasubramanian, S. et al. An overview of solid acid catalysts in lignocellulose biorefineries. Catalysts 15, 432 (2025).

    Google Scholar 

  39. Ansari, M. et al. Heterogeneous solid acid catalysts for sustainable biodiesel production from wastewater-derived sludge: A systematic and critical review. Chem. Eng. J. Adv. 22, 100718 (2025).

    Google Scholar 

  40. Shirini, F., Akbari-Dadamahaleh, S. & Mohammad-Khah, A. Rice husk Ash supported FeCl2·2H2O: A mild and highly efficient heterogeneous catalyst for the synthesis of polysubstituted Quinolines by Friedländer heteroannulation. Chin. J. Catal. 34, 2200–2208 (2013).

    Google Scholar 

  41. An, D., Guo, Y., Zhu, Y. & Wang, Z. A green route to Preparation of silica powders with rice husk Ash and waste gas. Chem. Eng. J. 162, 509–514 (2010).

    Google Scholar 

  42. Shirini, F., Akbari-Dadamahaleh, S., Mohammad-Khah, A. & Aliakbar, A. R. Rice husk: A mild, efficient, green and recyclable catalyst for the synthesis of 12-Aryl-8, 9, 10, 12-tetrahydro [a] xanthene-11-ones and Quinoxaline derivatives. C R Chim. 16, 207–216 (2013).

    Google Scholar 

  43. Seddighi, M., Shirini, F. & Mamaghani, M. Brønsted acidic ionic liquid supported on rice husk Ash (RHA-[pmim]HSO4): A highly efficient and reusable catalyst for the synthesis of 1-(benzothiazolylamino)phenylmethyl-2-naphthols. C R Chim. 18, 573–580 (2015).

    Google Scholar 

  44. Seddighi, M., Shirini, F. & Goli-Jolodar, O. Preparation, characterization and application of RHA/TiO2 nanocomposites in the acetylation of alcohols, phenols and amines. C R Chim. 19, 1003–1010 (2016).

    Google Scholar 

  45. Abdolmohammad-Zadeh, H., Tavarid, K. & Talleb, Z. Determination of Iodate in Food, Environmental, and Biological Samples after Solid-Phase Extraction with Ni-Al-Zr Ternary Layered Double Hydroxide as a Nanosorbent. Sci. World J. 145482 (2012). (2012).

  46. Joao, K. Thermo-Gravimetric analysis in the investigation of catalysts: insights and innovations. J. Chromatogr. Sep. Tech. .15, 1–2 (2024).

    Google Scholar 

  47. Moseson, D. E. et al. Application and limitations of thermogravimetric analysis to delineate the hot melt extrusion chemical stability processing window. Int. J. Pharm. 590, 119916 (2020).

    Google Scholar 

  48. Xie, W., Li, R. & Xu, Q. Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep. 8, 8752 (2018).

    Google Scholar 

  49. Nawaz, R. et al. Synthesis of Black-TiO2 and manganese-doped TiO2 nanoparticles and their comparative performance evaluation for photocatalytic removal of phenolic compounds from agro-industrial effluent. J. Nanopart. Res. 23, 263 (2021).

    Google Scholar 

  50. Ferreira-Neto, P. Thermally stable SiO2@TiO2 core@shell nanoparticles for application in photocatalytic self-cleaning ceramic tiles. Mater. Adv. 2, 2085–2096 (2021).

    Google Scholar 

  51. Kaur, A., Chahal, P. & Hogan, T. Selective fabrication of SiC/Si diodes by excimer laser under ambient conditions. IEEE Electron. Device Lett. 37, 142–145 (2016).

    Google Scholar 

  52. Lara, G. G. et al. Protection of normal cells from irradiation bystander effects by silica-flufenamic acid nanoparticles. J. Mater. Sci. : Mater. Med. 29, 130 (2018).

    Google Scholar 

  53. Stevens, J. S. et al. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid–base complexes. Phys. Chem. Chem. Phys. 16, 1150–1160 (2013).

    Google Scholar 

  54. Gholinejad, M., Aloueian, F. & Sansano, J. M. Nickel–Cobalt nanoprism comprising Ppm level of palladium as an efficient catalyst for Sonogashira reaction. App Org. Chem. 39, e70180 (2025).

    Google Scholar 

  55. Guo, J. et al. Atomically thin SiC nanoparticles obtained via ultrasonic treatment to realize enhanced catalytic activity for the oxygen reduction reaction in both alkaline and acidic media. RSC Adv. 7, 22875–22881 (2017).

    Google Scholar 

  56. Neto, B. A. D., Rocha, R. O. & Rodrigues, M. O. Catalytic approaches to multicomponent reactions: A critical review and perspectives on the roles of catalysis. Molecules 27, 132 (2022).

    Google Scholar 

  57. Borah, B. et al. Brønsted acid catalyzed mechanochemical domino multicomponent reactions by employing liquid assisted grindstone chemistry. Sci. Rep. 13, 1386 (2023).

    Google Scholar 

  58. Mohammad, F., Azizi, N., Mirjafari, Z. & Mokhtari, J. Catalytic acidic deep eutectic mixture for efficient and promising synthesis of Quinazolinone and Quinoxaline derivatives. RSC Adv. 15, 25971–25984 (2025).

    Google Scholar 

  59. Ghosh, T., Mandal, I., Basak, S. J. & Dash, J. Potassium tert-Butoxide promoted synthesis of Dihydroquinazolinones. J. Org. Chem. 86, 14695–14704 (2021).

    Google Scholar 

  60. Kohli, S., Rathee, G., Hooda, S. & Chandra, R. An efficient approach for the green synthesis of biologically active 2,3-dihydroquinazolin-4(1H)-ones using a magnetic EDTA coated copper based nanocomposite. RSC Adv. 13, 1923–1932 (2023).

    Google Scholar 

  61. Venugopala, K. N. et al. Larvicidal activities of 2-Aryl-2,3-Dihydroquinazolin – 4-ones against malaria vector Anopheles arabiensis, in Silico ADMET prediction and molecular target investigation. Molecules 25, 1316 (2020).

    Google Scholar 

  62. Safari, J. & Gandomi-Ravandi, S. Efficient synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones in the presence of nanocomposites under microwave irradiation. J. Mol. Catal. A: Chem. 390, 1–6 (2014).

    Google Scholar 

  63. Nasirmahale, L. N., Shirini, F. & Jolodar, O. G. Poly(4-vinylpyridinum) trinitromethanide: a useful and efficient heterogeneous catalyst for the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives under green conditions. Res. Chem. Intermed. 49, 4383–4403 (2023).

    Google Scholar 

  64. Li, Z. A novel magnetic heterojunction NiO@Fe3O4 photocatalyst in the synthesis of cardiovascular quinazolin-4(1H)-one drugs. Chem. Pap. 79, 2191–2200 (2025).

    Google Scholar 

  65. Jeevananthan, V., Senadi, G. C., Muthu, K., Arumugam, A. & Shanmugan, S. Construction of Indium(III)–Organic framework based on a flexible Cyclotriphosphazene-Derived hexacarboxylate as a reusable green catalyst for the synthesis of bioactive Aza-Heterocycles. Inorg. Chem. 63, 5446–5463 (2024).

    Google Scholar 

  66. Dutta, A., Damarla, K., Bordoloi, A., Kumar, A. & Sarma, D. KOH/DMSO: A basic suspension for transition metal-free tandem synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Tetrahedron Lett. 60, 1614–1619 (2019).

    Google Scholar 

  67. Rahimi, S. et al. Synthesis of antioxidant and antibacterial active Quinazolinones by carboxymethyl cellulose@MnFe2O4 biocatalyst. Inorg. Chem. Commun. 158, 111556 (2023).

    Google Scholar 

  68. Kumar, G. et al. An eco-friendly, sustainable, and greener approach to the synthesis of Dihydroquinazolin-4(1H)-ones using a deep eutectic solvent. J. Heterocycl. Chem. 61, 347–357 (2024).

    Google Scholar 

  69. Phulwale, S. P., Waghmare, S. D., Gurav, A. P., Gunturu, K. C. & Hangirgekar, S. P. Biosynthesis of BiFeO3 for BiFeO3@Ag-S-CH2-COOH as the nanocatalyst for one-pot synthesis of 2, 3-dihydroquinazolin-4(1H)-ones and their anti-blood cancer activity. J. Mol. Struct. 1338, 142288 (2025).

    Google Scholar 

  70. O’Brien, N. S., Gilbert, J., McCluskey, A. & Sakoff, J. A. 2,3-Dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones as broad-spectrum cytotoxic agents and their impact on tubulin polymerisation. RSC Med. Chem. 15, 1686–1708 (2024).

    Google Scholar 

  71. Hammett, L. P. The effect of structure upon the reactions of organic Compounds. Benzene derivatives. ACS Publications. https://doi.org/10.1021/ja01280a022 (2002). https://pubs.acs.org/doi/abs/10.1021/ja01280a022

    Google Scholar 

  72. Maghsoodlou, M. T. et al. Chloroacetic acid-promoted heterocyclic reactions: efficient Preparation of tetrahydropyridines and 2,3-dihydroquinazolin-4(1H)-ones. Iran J. Catal 5, (2015).

  73. Sahu, A., Mishra, S., Sahu, P., Gajbhiye, A. & Agrawal, R. K. Indium(III) chloride: an efficient catalyst for One-Pot multicomponent synthesis of 2,3-dihydroquinazoline-4(1H)-ones. Curr. Organocatal. 5, 137–144 (2018).

    Google Scholar 

  74. Dutta, A. et al. Sustainable parts-per-million level catalysis with feiii: One-pot cascade synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water. App Org. Chem. 35, e6116 (2021).

    Google Scholar 

  75. Bodaghifard, M. A. & Safari, S. Cu(II) complex-decorated hybrid nanomaterial: a retrievable catalyst for green synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J. Coord. Chem. 74, 1613–1627 (2021).

    Google Scholar 

  76. Wu, S. J., Zhao, Z. Q., Gao, J. S., Chen, B. H. & Chen, G. F. Efficient one-pot synthesis of 2,3-dihydroquinazoline-4(1H)-ones promoted by FeCl3/neutral Al2O3. Res. Chem. Intermed. 45, 2327–2339 (2019).

    Google Scholar 

  77. Zhaleh, S., Hazeri, N. & Maghsoodlou, M. T. Green protocol for synthesis of 2,3-dihydroquinazolin-4(1H)-ones: lactic acid as catalyst under solvent-free condition. Res. Chem. Intermed. 42, 6381–6390 (2016).

    Google Scholar 

  78. Karami, Z. & Khodaei, M. M. Preparation, characterization, and application of supported phosphate acid on the UiO-66-NH2 as an efficient and bifunctional catalyst for the synthesis of acridines. Res. Chem. Intermed. 49, 1545–1561 (2023).

    Google Scholar 

  79. Amiri, Z., Malmir, M., Hosseinnejad, T., Kafshdarzadeh, K. & Heravi, M. M. Combined experimental and computational study on Ag-NPs immobilized on rod-like hydroxyapatite for promoting Hantzsch reaction. J. Mol. Catal. 524, 112319 (2022).

    Google Scholar 

  80. Heravi, M. M., Hosseinnejad, T. & Nazari, N. Computational investigations on structural and electronic properties of CuI nanoparticles immobilized on modified Poly (styrene-co-maleic anhydride), leading to an unexpected but efficient catalyzed synthesis of 1,4-dihydropyridine via Hantzsch pyridine synthesis. Can. J. Chem. 95, 530–536 (2017).

    Google Scholar 

  81. Li, W., Ma, R., Wang, Z. & Lü, C. Insights for photochemical mechanisms of acridine-1,8-diones: an experimental and theoretical analysis and first application for fluorescence detection of 2,4,6-trinitrophenol. J. Mol. Liq. 415, 126401 (2024).

    Google Scholar 

  82. Zhu, A., Liu, R., Du, C. & Li, L. Betainium-based ionic liquids catalyzed multicomponent Hantzsch reactions for the efficient synthesis of acridinediones. RSC Adv. 7, 6679–6684 (2017).

    Google Scholar 

  83. Alponti, L. H. R., Picinini, M., Urquieta-Gonzalez, E. A. & Corrêa, A. G. USY-zeolite catalyzed synthesis of 1,4-dihydropyridines under microwave irradiation: structure and recycling of the catalyst. J. Mol. Struct. 1227, 129430 (2021).

    Google Scholar 

  84. Sheikhveisi, M., Hazeri, N., Lashkari, M., Niya, F., Fatahpour, M. & H., & Application of Fe3O4@THAM–CH2CH2–SCH2CO2H magnetic nanoparticles as an Acidic, recyclable and green catalyst for the synthesis of Hexahydroacridine-1,8-diones, Hexahydroquinolines, and 2-Amino-3-cyanopyridines. Org. Prep Proced. Int. 57, 322–334 (2025).

    Google Scholar 

  85. Wang, F. M., Zhou, L., Li, J. F., Bao, D. & Chen, L. Z. Synthesis, Structure, and biological activities of 10-Substituted 3,3,6,6-Tetramethyl-9-Aryl-3,4, 6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione derivatives. J. Heterocyc Chem. 54, 3120–3125 (2017).

    Google Scholar 

  86. Zolfigol, M. A., Karimi, F., Yarie, M. & Torabi, M. Catalytic application of sulfonic acid-functionalized titana-coated magnetic nanoparticles for the Preparation of 1,8-dioxodecahydroacridines and 2,4,6-triarylpyridines via anomeric-based oxidation. App Org. Chem. 32, e4063 (2018).

    Google Scholar 

  87. Amiri, Z., Malmir, M., Hosseinnejad, T., Kafshdarzadeh, K. & Heravi, M. M. Combined experimental and computational study on Ag-NPs immobilized on rod-like hydroxyapatite for promoting Hantzsch reaction. Mol. Catal. 524, 112319 (2022).

    Google Scholar 

  88. Fan, X., Li, Y., Zhang, X., Qu, G. & Wang, J. An efficient and green Preparation of 9-arylacridine-1,8-dione derivatives. Heteroat. Chem. 18, 786–790 (2007).

    Google Scholar 

  89. Dhane, N. S. et al. Synthesis of 1, 8-dioxodecahydroacridines via Hantzsch condensation using Theophylline in an aqueous medium: an eco-friendly and bio-based approach. Res. Chem. Intermed. 50, 1147–1160 (2024).

    Google Scholar 

  90. Koteeswari, R., Ashokkumar, P., Malar, E. J. P., Ramakrishnan, V. T. & Ramamurthy, P. Highly selective, sensitive and quantitative detection of Hg2+ in aqueous medium under broad pH range. Chem. Commun. 47, 7695–7697 (2011).

    Google Scholar 

  91. Chavan, P. N., Pansare, D. N. & Shelke, R. N. Eco-friendly, ultrasound-assisted, and facile synthesis of one-pot multicomponent reaction of acridine-1,8(2H,5H)-diones in an aqueous solvent. J. Chin. Chem. Soc. 66, 822–828 (2019).

    Google Scholar 

  92. Sehout, I., Boulcina, R., Boumoud, B., Boumoud, T. & Debache, A. Solvent-free synthesis of polyhydroquinoline and 1,8-dioxodecahydroacridine derivatives through the Hantzsch reaction catalyzed by a natural organic acid: A green method. Synth. Commun. 47, 1185–1191 (2017).

    Google Scholar 

  93. Kiani, M. & Mohammadipour, M. Fe3O4@SiO2–MoO3H nanoparticles: a magnetically recyclable nanocatalyst system for the synthesis of 1,8-dioxo-decahydroacridine derivatives. RSC Adv. 7, 997–1007 (2017).

    Google Scholar 

  94. Aute, D., Parhad, A., Vikhe, V., Uphad, B. & Gadhave, A. Aluminized polyborate catalyzed efficient solvent-free synthesis of 1,8-dioxo-decahydroacridines via Hantzsch condensation. Curr. Chem. Lett. 13, 417–424 (2024).

    Google Scholar 

  95. Green protocol for the synthesis. Of 1,8-dioxo-decahydroacridines by Hantzsch condensation using citric acid as organocatalyst on JSTOR. Curr. Sci. 116, 936–942 (2019).

    Google Scholar 

  96. Magyar, Á. & Hell, Z. An efficient One-Pot Four-Component synthesis of 9-Aryl-Hexahydroacridine-1,8-Dione derivatives in the presence of a molecular sieves supported iron catalyst. Catal. Lett. 149, 2528–2534 (2019).

    Google Scholar 

  97. Lavanya, G. et al. The first Recyclable, nanocrystalline cds thin film mediated Eco-benign synthesis of Hantzsch 1, 4 Dihyropyridines, 1, 8-Dioxodecahydroacridine and polyhydroquinolines derivatives. App Org. Chem. 33, e5026 (2019).

    Google Scholar 

  98. Karhale, S., Patil, M., Rashinkar, G. & Helavi, V. Green and cost effective protocol for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines by using sawdust Sulphonic acid. Res. Chem. Intermed. 43, 7073–7086 (2017).

    Google Scholar 

  99. Hassanzadeh, N., Dekamin, G., Valiey, E. & M., & A supramolecular magnetic and multifunctional Titriplex V-grafted Chitosan organocatalyst for the synthesis of acridine-1,8-diones and 2-amino-3-cyano-4 H -pyran derivatives. Nanoscale Adv. 7, 99–123 (2025).

    Google Scholar 

  100. Pourdasht, S., Mousapour, M., Shirini, F. & Tajik, H. Introduction of a tropine-based dication ionic liquid catalyst for the synthesis of polyhydroquinoline and 1,8-dioxodecahydroacridine derivatives. Res. Chem. Intermed. 48, 4403–4418 (2022).

    Google Scholar 

  101. Mazloumi, M. & Shirini, F. Introduction of a new catalyst containing an ionic liquid Bridge on nanoporous Na+- montmorillonite for the synthesis of hexahydroquinolines and 1,8-dioxo-decahydroacridines via Hantzsch condensation. J. Mol. Struct. 1217, 128326 (2020).

    Google Scholar 

  102. Nasirmahale, L. N., Shirini, F., Bayat, Y. & Mazloumi, M. Introduction of TiO2-[bip]-NH2+ C(NO2)3– as an effective nanocatalyst for the Hantzsch reactions. New. J. Chem. 46, 23129–23138 (2022).

    Google Scholar 

  103. Mousapour, M. & Shirini, F. Piperazinium nano silica sulfonate: an efficient catalyst for the Hantzsch. Reaction ChemistrySelect. 6, 4247–4255 (2021).

    Google Scholar 

  104. Asareh, R., Safaiee, M., Moeinimehr, M. & Yaghoobi, F. Design and synthesis, and experimental-computational analysis of an acetic acid-functionalized zinc Tetrapyridinoporphyrazine catalyst for synthesizing acridine and Quinoline derivatives. Sci. Rep. 15, 1–22 (2025).

    Google Scholar 

Download references

Acknowledgements

The authors thank the Research Council of the University of Guilan, IASBS, and the University of Alicante for helping to do this work.

Author information

Authors and Affiliations

  1. Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

    Fatemeh Aloueian & Mohammad Gholinejad

  2. Department of Organic Chemistry, Faculty of Chemistry, University of Guilan, Rasht, 41335 19141, Iran

    Farhad Shirini

  3. Departamento de Química Orgánica, Instituto de Síntesis Orgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Alicante, 03690, Spain

    José M. Sansano

Authors
  1. Fatemeh Aloueian
    View author publications

    Search author on:PubMed Google Scholar

  2. Farhad Shirini
    View author publications

    Search author on:PubMed Google Scholar

  3. Mohammad Gholinejad
    View author publications

    Search author on:PubMed Google Scholar

  4. José M. Sansano
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F. A. wrote the main manuscript text and F. S., M. G. and J. M. S corrected it. All authors reviewed the manuscript.”

Corresponding author

Correspondence to Farhad Shirini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloueian, F., Shirini, F., Gholinejad, M. et al. RHA/TiO2-[bip]-NH2+NO3− as an efficient catalyst for the solvent-free synthesis of 1,8-dioxo-decahydroacridine and 2,3-dihydroquinazolin-4(1H)-one derivatives. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38867-z

Download citation

  • Received: 07 December 2025

  • Accepted: 31 January 2026

  • Published: 10 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38867-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing