Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Computational study of carbon-doped TiO2(B) nanomaterials for improved dye-sensitized solar cells
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 February 2026

Computational study of carbon-doped TiO2(B) nanomaterials for improved dye-sensitized solar cells

  • Herman Heffner1,2,
  • Jorge M. Marchetti3,
  • Ricardo Faccio4 &
  • …
  • Ignacio López-Corral2 

Scientific Reports , Article number:  (2026) Cite this article

  • 446 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Materials science
  • Nanoscience and technology

Abstract

Surface doping has emerged as a promising approach to enhance the reactivity and optoelectronic properties of titanium dioxide (TiO2) and other inorganic oxide semiconductors. This strategy has significant potential to improve the efficiency and long-term stability of dye-sensitized solar cells (DSSCs). The present study employs density functional theory (DFT) calculations to investigate, for the first time, the adsorption behavior of the organometallic N719 dye on pristine and carbon-doped ultrathin TiO2(B) films. Initially, the interaction between the N719 dye and the pristine TiO2(B) (100) surface is examined, considering various molecular orientations and anchoring configurations. The adsorption energies and the resultant changes in the semiconductor’s electronic structure are determined. Subsequently, the impact of carbon doping on the preferential adsorption configurations is analyzed. The results reveal that the adsorption of the N719 dye is energetically favorable on both the pristine and C-doped TiO2(B) (100) surfaces. Notably, all adsorption-related properties are significantly enhanced after carbon doping, with the adsorption energy increasing by up to 300% compared to the undoped surface. This substantial increase in adsorption performance is critical for achieving highly efficient and long-lasting DSSCs.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Google Scholar 

  2. Grätzel, M. Dye-Sensitized solar cells. J. Photochem. Photobiol C. 4, 145–153 (2003).

    Google Scholar 

  3. Freitag, M. et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photon. 11, 372–378 (2017).

    Google Scholar 

  4. Ren, Y. et al. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature 613, 60–65 (2023).

    Google Scholar 

  5. Vougioukalakis, G. C., Philippopoulos, A. I., Stergiopoulos, T. & Falaras, P. Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coord. Chem. Rev. 255, 2602–2621 (2011).

    Google Scholar 

  6. Qin, Y. & Peng, Q. Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells. Int. J. Photoenergy 2012, 291579 (2012).

    Google Scholar 

  7. Naik, P., Abdellah, I. M., Abdel-Shakour, M., Keremane, K. S. & Adhikari, A. V. Enhancing the photoelectrochemical performance of Ru(II)-Sensitized Dye-Sensitized solar cells using Cyanopyridine-Based cosensitizers. Energy Technol. 13, 2500294 (2025).

    Google Scholar 

  8. Shamsaldeen, A. A. et al. Influence of TiO2 surface defects on the adsorption of N719 dye molecules. Phys. Chem. Chem. Phys. 23, 22160–22173 (2021).

    Google Scholar 

  9. German, E., Faccio, R. & Mombrú, Á. W. Theoretical study of new potential semiconductor surfaces performance for dye sensitized solar cell usage: TiO2-B (001), (100) and H2Ti3O7 (100). Appl. Surf. Sci. 426, 1182–1189 (2017).

    Google Scholar 

  10. Xie, F. et al. TiO2-B as an electron transporting material for highly efficient perovskite solar cells. J. Power Sources. 415, 8–14 (2019).

    Google Scholar 

  11. Liu, H. et al. Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23, 3450–3454 (2011).

    Google Scholar 

  12. Kim, N., Raj, M. R. & Lee, G. Nitrogen-doped TiO2(B) nanobelts enabling enhancement of electronic conductivity and efficiency of lithium-ion storage. Nanotech 31, 415401 (2020).

    Google Scholar 

  13. Abbasi, A., Sardroodi, J. J. & Ebrahimzadeh, A. R. Chemisorption of CH2O on N-doped TiO2 anatase nanoparticle as modified nanostructure media: A DFT study. Surf. Sci. 654, 20–32 (2016).

    Google Scholar 

  14. May Ix, L. A., Estrella González, A., Cipagauta-Díaz, S. & Gómez, R. Effective electron–hole separation over N-doped TiO2 materials for improved photocatalytic reduction of 4-nitrophenol using visible light. J. Chem. Technol. Biotechnol. 95, 2694–2706 (2020).

    Google Scholar 

  15. Heffner, H., Marchetti, J. M., Faccio, R. & López-Corral, I. A theoretical exploration of catechol sensitization of C-doped bronze TiO2 surfaces for photochemical systems. Comput. Mater. Sci. 230, 112523 (2023).

    Google Scholar 

  16. Singh, J. et al. XPS, UV–Vis, FTIR, and EXAFS Studies to Investigate the Binding Mechanism of N719 Dye onto Oxalic Acid Treated TiO2 and Its Implication on Photovoltaic Properties. J. Phys. Chem. 117, 21096–21104 (2013).

    Google Scholar 

  17. De Angelis, F., Fantacci, S., Selloni, A., Nazeeruddin, M. K. & Grätzel, M. First-Principles modeling of the adsorption geometry and electronic structure of Ru(II) dyes on extended TiO2 substrates for Dye-Sensitized solar cell applications. J. Phys. Chem. C. 114, 6054–6061 (2010).

    Google Scholar 

  18. Schiffmann, F. et al. Protonation-Dependent binding of ruthenium bipyridyl complexes to the Anatase(101) surface. J. Phys. Chem. C. 114, 8398–8404 (2010).

    Google Scholar 

  19. Sodeyama, K. et al. Protonated carboxyl anchor for stable adsorption of Ru N749 dye (Black dye) on a TiO2 anatase (101) surface. J. Phys. Chem. Lett. 3, 472–477 (2012).

    Google Scholar 

  20. Klein, M., Pankiewicz, R., Zalas, M. & Stampor, W. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture. Sci. Rep. 6, 30077 (2016).

    Google Scholar 

  21. Sheng, L., Liao, T., Kou, L. & Sun, Z. Single-crystalline ultrathin 2D TiO2 nanosheets: A Bridge towards superior photovoltaic devices. Mater. Today Energy. 3, 32–39 (2017).

    Google Scholar 

  22. Jiang, L. et al. Niobium-Doped (001)-Dominated anatase TiO2 nanosheets as photoelectrode for efficient Dye-Sensitized solar cells. ACS Appl. Mater. Interfaces. 9, 9576–9583 (2017).

    Google Scholar 

  23. Shahroosvand, H., Abbasi, P. & Bideh, B. N. Dye-Sensitized Solar Cell Based on Novel Star-Shaped Ruthenium Polypyridyl Sensitizer: New Insight into the Relationship between Molecular Designing and Its Outstanding Charge Carrier Dynamics. ChemistrySelect 3, 6821–6829 (2018).

    Google Scholar 

  24. Selvaraj, P. et al. Soft-template synthesis of high surface area mesoporous titanium dioxide for dye-sensitized solar cells. Int. J. Energy Res. 43, 523–534 (2019).

    Google Scholar 

  25. Kong, X. et al. Enhancement of photocatalytic H2 production by metal complex electrostatic adsorption on TiO2(B) nanosheets. J. Mater. Chem. A. 7, 3797–3804 (2019).

    Google Scholar 

  26. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999).

    Google Scholar 

  27. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Google Scholar 

  28. Kresse, G. & Furthmüller, J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

    Google Scholar 

  29. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  30. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  31. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976).

    Google Scholar 

  32. Deák, P., Gali, A., Aradi, B. & Frauenheim, T. Accurate gap levels and their role in the reliability of other calculated defect properties. Phys. Stat. Sol (B). 248, 790–798 (2011).

    Google Scholar 

  33. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B. 57, 1505–1509 (1998).

    Google Scholar 

  34. Heffner, H. & Faccio, R. López–Corral, I. C–doped TiO2(B): A density functional theory characterization. Appl. Surf. Sci. 551, 149479 (2021).

    Google Scholar 

  35. Heffner, H., Marchetti, J. M., Faccio, R. & López-Corral, I. Density functional evaluation of catechol adsorption on pristine and reduced TiO2(B)(100) ultrathin sheets for Dye-Sensitized solar cell applications. Inorg. Chem. 61, 19248–19260 (2022).

    Google Scholar 

  36. German, E., Faccio, R. & Mombrú, A. W. A DFT + U study on structural, electronic, vibrational and thermodynamic properties of TiO2 polymorphs and hydrogen titanate: tuning the Hubbard ‘U-term’. J. Phys. Commun. 1, 055006 (2017).

    Google Scholar 

  37. Arrouvel, C., Parker, S. C. & Islam, M. S. Lithium insertion and transport in the TiO2–B anode material: A computational study. Chem. Mater. 21, 4778–4783 (2009).

    Google Scholar 

  38. Gao, D. et al. First-principles study on screening doped TiO2(B) as an anode material with high conductivity and low lithium transport resistance for lithium-ion batteries. Phys. Chem. Chem. Phys. 21, 17985–17992 (2019).

    Google Scholar 

  39. Morgan, B. J. & Madden, P. A. Lithium intercalation into TiO2(B): A comparison of LDA, GGA, and GGA + U density functional calculations. Phys. Rev. B. 86, 035147 (2012).

    Google Scholar 

  40. Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B. 71, 035105 (2005).

    Google Scholar 

  41. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Google Scholar 

  42. Izumi, F. & Momma, K. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Google Scholar 

  43. Ganose, A. M., Jackson, A. J. & Scanlon, D. O. Sumo: Command-line tools for plotting and analysis of periodic *ab initio* calculations. J. Open. Source Softw. 3, 717 (2018).

    Google Scholar 

  44. Niu, M. The adsorption geometry and electronic structure of organic dye molecule on TiO2(101) surface from first principles calculations. MATEC Web Conf. 88, 03002 (2017).

    Google Scholar 

  45. Vittadini, A., Casarin, M. & Selloni, A. Structure and stability of TiO2-B surfaces: A density functional study. J. Phys. Chem. C. 113, 18973–18977 (2009).

    Google Scholar 

  46. Liu, W. et al. A shortcut for evaluating activities of TiO2 facets: water dissociative chemisorption on TiO2-B (100) and (001). Phys. Chem. Chem. Phys. 12, 8721–8727 (2010).

    Google Scholar 

  47. Vittadini, A., Selloni, A., Rotzinger, F. P. & Grätzel, M. Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J. Phys. Chem. B. 104, 1300–1306 (2000).

    Google Scholar 

  48. Zhang, Y. et al. Copper-Doped titanium dioxide bronze nanowires with superior high rate capability for lithium ion batteries. ACS Appl. Mater. Interfaces. 8, 7957–7965 (2016).

    Google Scholar 

  49. Ooyama, Y. & Harima, Y. Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells. Eur. J. Org. Chem. 2009, 2903–2934 (2009).

    Google Scholar 

  50. Meng, S. & Kaxiras, E. Electron and hole dynamics in Dye-Sensitized solar cells: influencing factors and systematic trends. Nano Lett. 10, 1238–1247 (2010).

    Google Scholar 

  51. Zhang, Q. & Cao, G. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today. 6, 91–109 (2011).

    Google Scholar 

  52. Zhang, L., Mohamed, H. H., Dillert, R. & Bahnemann, D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol C. 13, 263–276 (2012).

    Google Scholar 

  53. German, E., Faccio, R. & Mombrú, A. W. Comparison of standard DFT and Hubbard-DFT methods in structural and electronic properties of TiO2 polymorphs and H-titanate ultrathin sheets for DSSC application. Appl. Surf. Sci. 428, 118–123 (2018).

    Google Scholar 

  54. Chang, S. & Liu, W. Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl. Catal. B Environ. 101, 333–342 (2011).

    Google Scholar 

  55. Subalakshmi, K. & Senthilselvan, J. Effect of fluorine-doped TiO2 photoanode on electron transport, recombination dynamics and improved DSSC efficiency. Sol Energy. 171, 914–928 (2018).

    Google Scholar 

  56. Hamann, T. W., Jensen, R. A., Martinson, A. B. F., Ryswyk, H. V. & Hupp, J. T. Advancing beyond current generation dye-sensitized solar cells. Energy Environ. Sci. 1, 66–78 (2008).

    Google Scholar 

Download references

Acknowledgements

The simulations were performed using resources provided by UNINETT Sigma2 – the National Infrastructure for High Performance Computing and Data Storage in Norway. R. Faccio acknowledges CSIC-UdelaR, PEDECIBA, and ANII, Uruguayan institutions.

Funding

Open Access funding enabled and organized by Projekt DEAL. I. López-Corral is a member of CONICET. H. Heffner is a fellow researcher at that institution. This work was supported by PGI-SGCyT-UNS 24/Q140.

Author information

Authors and Affiliations

  1. Professur für Neuartige Elektronik Technologien, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany

    Herman Heffner

  2. Instituto de Química del Sur (INQUISUR, UNS-CONICET), Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina

    Herman Heffner & Ignacio López-Corral

  3. Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1430, Ås, Norway

    Jorge M. Marchetti

  4. Área Física & Centro NanoMat, DETEMA, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, 11800, Montevideo, Uruguay

    Ricardo Faccio

Authors
  1. Herman Heffner
    View author publications

    Search author on:PubMed Google Scholar

  2. Jorge M. Marchetti
    View author publications

    Search author on:PubMed Google Scholar

  3. Ricardo Faccio
    View author publications

    Search author on:PubMed Google Scholar

  4. Ignacio López-Corral
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H. Heffner: Conceptualization, Investigation, Formal analysis, Data curation, Visualization, Methodology, Writing – original draft. J.M. Marchetti: Resources, Software. R. Faccio: Validation, Writing – review & editing. I. López-Corral: Conceptualization, Resources, Supervision, Writing – review & editing, Funding acquisition.

Corresponding authors

Correspondence to Herman Heffner or Ignacio López-Corral.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heffner, H., Marchetti, J.M., Faccio, R. et al. Computational study of carbon-doped TiO2(B) nanomaterials for improved dye-sensitized solar cells. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38897-7

Download citation

  • Received: 24 October 2025

  • Accepted: 31 January 2026

  • Published: 10 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38897-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • TiO2(B)
  • Carbon doping
  • Adsorption energy
  • DFT
  • N719
  • DSSC
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing