Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Innovative sodium benzoate-modified hydroxyapatite for enhanced dye removal using a combined experimental and DFT approach
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Innovative sodium benzoate-modified hydroxyapatite for enhanced dye removal using a combined experimental and DFT approach

  • Ali Boukra1,
  • Omar Boukra1,
  • Souhayla Latifi1,
  • Sanaâ Saoiabi1,
  • Mohammed Merzouki2,
  • Miloud El Karbane3,
  • Khalil Azzaoui4,5,
  • Shehdeh Jodeh6,
  • Belkheir Hammouti7,
  • Solhe F. Alshahateet8,
  • Larbi Rhazi9 &
  • …
  • Hatem A. Abuelizz10 

Scientific Reports , Article number:  (2026) Cite this article

  • 52 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Environmental sciences
  • Materials science

Abstract

This study presents the development of a novel adsorbent based on hydroxyapatite (CaHAp) grafted with sodium benzoate (SB) at varying proportions (5%, 10%, 15%) via a double decomposition method. Structural and chemical characterizations (XRD, FTIR, SEM, TGA/DTA) confirmed the successful integration of SB, with noticeable improvements in crystallinity (+ 10%), porosity, and thermal stability compared to pristine CaHAp. Adsorption experiments using methylene blue (MB⁺) as a model pollutant showed that the CaHAp-(SB)15 composite achieved an adsorption efficiency of 90%. The adsorption process followed Langmuir isotherm (R² > 0.96) and pseudo-second-order kinetics (R² > 0.99), indicating monolayer chemisorption as the dominant mechanism. Increasing SB content correlated with a significant rise in adsorption capacity from 5.41 to 9.42 mg·g⁻¹, demonstrating the role of –CO2⁻ groups in enhancing electrostatic interactions with cationic MB⁺. DFT simulations supported the experimental findings, showing favorable interactions between SB and CaHAp at both molecular and atomic levels, particularly through non-covalent forces such as van der Waals and electrostatic interactions. This combined theoretical–experimental approach highlights CaHAp-(SB)15 as a promising, low-cost, and eco-friendly adsorbent for dye-contaminated wastewater, offering high efficiency, reproducibility, and environmental compatibility.

Data availability

The data presented in this study are available upon request from the corresponding author.

References

  1. Xie, X. et al. Selective adsorption of cationic dyes for stable metal–organic framework ZJU-48. ACS Omega. 5, 13595–13600. https://doi.org/10.1021/acsomega.0c00385 (2020).

    Google Scholar 

  2. Lan, D. et al. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: a review on species, mechanisms and perspectives. Chemosphere 293, 133464. https://doi.org/10.1016/j.chemosphere.2021.133464 (2022).

    Google Scholar 

  3. Mutahir, S. et al. MOF-derived ZnO/g-C3N4 nanophotocatalyst for efficient degradation of organic pollutant. J. Saudi Chem. Soc. 28, 101821. https://doi.org/10.1016/j.jscs.2024.101821 (2024).

    Google Scholar 

  4. Mutahir, S. et al. Oxygen doped g-C3N4/LDH composite as highly efficient photocatalyst for wastewater treatment. Z. Fur. Phys. Chem. 238, 2183–2197. https://doi.org/10.1515/zpch-2023-0468 (2024).

    Google Scholar 

  5. Azeez, L. et al. Adsorptive properties of rod-shaped silver nanoparticles-functionalized biogenic hydroxyapatite for remediating methylene blue and congo red. Inorg. Chem. Commun. 142, 109655. https://doi.org/10.1016/j.inoche.2022.109655 (2022).

    Google Scholar 

  6. Xu, T., An, S., Peng, C., Hu, J. & Liu, H. Construction of large-pore crystalline covalent organic framework as high-performance adsorbent for Rhodamine B dye removal. Ind. Eng. Chem. Res. 59, 8315–8322. https://doi.org/10.1021/acs.iecr.0c00304 (2020).

    Google Scholar 

  7. Zhou, Y. et al. Facile Preparation of alveolate biochar derived from seaweed biomass with potential removal performance for cationic dye. J. Mol. Liq. 353, 118623. https://doi.org/10.1016/j.molliq.2022.118623 (2022).

    Google Scholar 

  8. Zheng, Y., Cheng, B., Fan, J., Yu, J. & Ho, W. Review on nickel-based adsorption materials for congo red. J. Hazard. Mater. 403, 123559. https://doi.org/10.1016/j.jhazmat.2020.123559 (2021).

    Google Scholar 

  9. Aaddouz, M. et al. Removal of methylene blue from aqueous solution by adsorption onto hydroxyapatite nanoparticles. J. Mol. Struct. 1288, 135807 (2023).

    Google Scholar 

  10. Saoiabi, S. et al. Lead and zinc removal from aqueous solutions by aminotriphosphonate-modified converted natural phosphates. Chem. Eng. J. 211–212, 233–239. https://doi.org/10.1016/j.molstruc.2023.135807 (2012).

    Google Scholar 

  11. Hamad, H. N. & Idrus, S. Recent developments in the application of bio-waste-derived adsorbents for the removal of methylene blue from wastewater: a review. Polymers 14, 783. https://doi.org/10.3390/polym14040783 (2022).

    Google Scholar 

  12. Sriram, G. et al. Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism: a review. Sustain. Mater. Technol. 31, e00378. https://doi.org/10.1016/j.susmat.2021.e00378 (2022).

    Google Scholar 

  13. Toufik, E., Noukrati, H., Abouricha, S. & Barroug, A. & Ben youcef, H. Novel biocomposite based on functionalized poorly crystalline apatite and chitosan: a physicochemical evaluation. Mater. Today Proc. 51, 1918–1923, (2022). https://doi.org/10.1016/j.matpr.2021.02.649

  14. Verma, R., Mishra, S. R., Gadore, V. & Ahmaruzzaman Md. Hydroxyapatite-based composites: excellent materials for environmental remediation and biomedical applications. Adv. Colloid Interface Sci. 315, 102890. https://doi.org/10.1016/j.cis.2023.102890 (2023).

    Google Scholar 

  15. Haider, A., Haider, S., Han, S. S. & Kang, I. K. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: a review. RSC Adv. 7, 7442–7458. https://doi.org/10.1039/C6RA26124H (2017).

    Google Scholar 

  16. Pokhrel, S. Hydroxyapatite preparation, properties and its biomedical applications. Adv. Chem. Eng. Sci. 8, 225–240. https://doi.org/10.4236/aces.2018.84016 (2018).

    Google Scholar 

  17. Biedrzycka, A. & Skwarek, E. Composites of hydroxyapatite and their application in adsorption, medicine and as catalysts. Adv. Colloid Interface Sci. 334, 103308. https://doi.org/10.1016/j.cis.2024.103308 (2024).

    Google Scholar 

  18. Balasooriya, I. L., Chen, J., Korale Gedara, S. M., Han, Y. & Wickramaratne, M. N. Applications of nano hydroxyapatite as adsorbents: a review. Nanomaterials 12, 2324, (2022). https://doi.org/10.3390/nano12142324

  19. Amenaghawon, A. N., Anyalewechi, C. L., Darmokoesoemo, H. & Kusuma, H. S. Hydroxyapatite-based adsorbents: applications in sequestering heavy metals and dyes. J. Environ. Manag. 302, 113989. https://doi.org/10.1016/j.jenvman.2021.113989 (2022).

    Google Scholar 

  20. Xiong, B. Application of hydroxyapatite for the adsorption of heavy metals in water treatment. Acad. J. Sci. Technol. 8, 52–53. https://doi.org/10.54097/nj2je113 (2023).

    Google Scholar 

  21. Skwarek, E., Gładysz-Płaska, A., Choromańska, J. B. & Broda, E. Adsorption of uranium ions on nano-hydroxyapatite and modified by Ca and ag ions. Adsorption 25, 639–647. https://doi.org/10.1007/s10450-019-00063-z (2019).

    Google Scholar 

  22. Azzaoui, K. et al. Synthesis of hydroxyapatite/polyethylene glycol 6000 composites by novel dissolution/precipitation method: optimization of the adsorption process using a factorial design: DFT and molecular dynamic. BMC Chem. 17, 150. https://doi.org/10.1186/s13065-023-01061-7 (2023).

    Google Scholar 

  23. Pramanik, S., Agarwal, A. K., Rai, K. N. & Garg, A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 33, 419–426. https://doi.org/10.1016/j.ceramint.2005.10.025 (2007).

    Google Scholar 

  24. Achelhi, K. et al. Role of carboxylate chelating agents on the chemical, structural and textural properties of hydroxyapatite. Dalton Trans. 39, 10644–10651. https://doi.org/10.1039/C0DT00251H (2010).

    Google Scholar 

  25. Saoiabi, S., Gouza, A., Bouyarmane, H., Laghzizil, A. & Saoiabi, A. Organophosphonate-modified hydroxyapatites for Zn(II) and Pb(II) adsorption in relation of their structure and surface properties. J. Environ. Chem. Eng. 4, 428–433. https://doi.org/10.1016/j.jece.2015.11.036 (2016).

    Google Scholar 

  26. Rosskopfová, O., Bugriová, M., Viglašová, E., Hupian, M. & Galamboš, M. 111In-hydroxyapatite nanoparticles: sorption studies. J. Radioanal Nucl. Chem. 334, 1631–1641. https://doi.org/10.1007/s10967-024-09913-9 (2025).

    Google Scholar 

  27. Agougui, H., Sebeia, N., Jabli, M., El-Ghoul, Y. & Boughzala, K. Synthesis of hydroxyapatite-sodium metasilicate via double decomposition method: characterization and application to the removal of methylene blue. Inorg. Chem. Commun. 133, 108986. https://doi.org/10.1016/j.inoche.2021.108986 (2021).

    Google Scholar 

  28. Biedrzycka, A., Skwarek, E., Osypiuk, D. & Cristóvao, B. Synthesis of hydroxyapatite/iron oxide composite and comparison of selected structural, surface, and electrochemical properties. Materials 15, 1139. https://doi.org/10.3390/ma15031139 (2022).

    Google Scholar 

  29. Bouazzi, D. et al. Beneficial effect of in-situ citrate-grafting of hydroxyapatite surface for water treatment. Colloids Surf. A 666, 131366. https://doi.org/10.1016/j.colsurfa.2023.131366 (2023).

    Google Scholar 

  30. Khan, M. A. et al. Recent advances over the doped g-C3N4 in photocatalysis: a review. Coord. Chem. Rev. 522, 216227. https://doi.org/10.1016/j.ccr.2024.216227 (2025).

    Google Scholar 

  31. Ait Mansour, A. et al. Comprehensive analysis of a thiazole-substituted corrosion inhibitor’s impact on N80 carbon steel in acidic conditions: integrating computational predictions with experimental verifications. Mater. Chem. Phys. 320, 129405. https://doi.org/10.1016/j.matchemphys.2024.129405 (2024).

    Google Scholar 

  32. Cherriet, S. et al. In silico investigation of aristolochia longa anticancer potential against the epidermal growth factor receptor (EGFR) in the tyrosine kinase domain. Moroccan J. Chem. 11, 1074–1085. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i04.41725 (2023).

  33. Ren, F., Leng, Y., Xin, R. & Ge, X. Synthesis, characterization and Ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 6, 2787–2796. https://doi.org/10.1016/j.actbio.2009.12.044 (2010).

    Google Scholar 

  34. El Hassani, A. A. et al. A combined molecular dynamics simulation, DFT calculations, and experimental study of the adsorption of Rhodamine B dye on kaolinite and hydroxyapatite in aqueous solutions. Surf. Interfaces. 36, 102647. https://doi.org/10.1016/j.surfin.2023.102647 (2023).

    Google Scholar 

  35. Alshahateet, S. F. et al. Catalytic green synthesis of Tin(IV) oxide nanoparticles for phenolic compounds removal and molecular docking with EGFR tyrosine kinase. Sci. Rep. 14, 6519. https://doi.org/10.1038/s41598-024-55460-4 (2024).

    Google Scholar 

  36. Du, J. et al. Molecular basis of recognition of human osteopontin by 23C3, a potential therapeutic antibody for treatment of rheumatoid arthritis. J. Mol. Biol. 382, 835–842. https://doi.org/10.1016/j.jmb.2008.07.075 (2008).

    Google Scholar 

  37. Merzouki, M. et al. In silico evaluation of antiviral activity of flavone derivatives and commercial drugs against SARS-CoV-2 main protease (3CLpro). Moroccan J. Chem. 11(1), 129–143. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i1.35278 (2023).

  38. Filgueiras, M. R. T., Mkhonto, D. & de Leeuw, N. H. Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces. J. Cryst. Growth 294, 60–68. https://doi.org/10.1016/j.jcrysgro.2006.05.077 (2006).

    Google Scholar 

  39. Aissa, A., Agougui, H. & Debbabi, M. Surface modification of calcium fluoro and hydroxyapatite by 1-octylphosphonic dichloride. Appl. Surf. Sci. 257, 9002–9007. https://doi.org/10.1016/j.apsusc.2011.05.087 (2011).

    Google Scholar 

  40. Barandehfard, F. et al. The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceram. Int. 42, 17866–17875. https://doi.org/10.1016/j.ceramint.2016.08.122 (2016).

    Google Scholar 

  41. Phan, B. T. N. et al. Synthesis and characterization of nano-hydroxyapatite in maltodextrin matrix. Appl. Nanosci. 7, 1–7. https://doi.org/10.1007/s13204-016-0541-z (2017).

    Google Scholar 

  42. Degli Esposti, L., Adamiano, A., Siliqi, D., Giannini, C. & Iafisco, M. The effect of chemical structure of carboxylate molecules on hydroxyapatite nanoparticles. A structural and morphological study. Bioact Mater. 6, 2360–2371. https://doi.org/10.1016/j.bioactmat.2021.01.010 (2021).

    Google Scholar 

  43. Jia, R. et al. Surface modification of hydroxyapatite coating for enhanced antibiotic therapy. Coatings 14 (477). https://doi.org/10.3390/coatings14040477 (2024).

  44. Zhou, S. et al. Hydrogen bonding interaction of poly(D,L-lactide)/hydroxyapatite nanocomposites. Chem. Mater. 19, 247–253. https://doi.org/10.1021/cm0619398 (2007).

    Google Scholar 

  45. Borum, L. & Wilson, O. C. Surface modification of hydroxyapatite. Part II. Silica Biomater. 24, 3681–3688. https://doi.org/10.1016/S0142-9612(03)00240-0 (2003).

    Google Scholar 

  46. Bogya, E. S., Barabás, R., Csavdári, A., Dejeu, V. & Bâldea, I. Hydroxyapatite modified with silica used for sorption of copper(II). Chem. Pap. 63, 568–573. https://doi.org/10.2478/s11696-009-0059-x (2009).

    Google Scholar 

  47. Ben Seddik, N. et al. Computational, theoretical and experimental studies of four amino acids as corrosion inhibitors for brass in 3% NaCl medium. J. Mol. Liq. 397, 124113. https://doi.org/10.1016/j.molliq.2024.124113 (2024).

    Google Scholar 

  48. Ling, Y. et al. Influence mechanism of Fe(II/III) doping on the adsorption of methylamine salts on kaolinite surfaces elucidated through DFT calculations. J. Mol. Liq. 390, 123082. https://doi.org/10.1016/j.molliq.2023.123082 (2023).

    Google Scholar 

  49. Danisman, M., Berisha, A., Dagdag, O. & Oral, A. Surface modification of hydroxyapatite with enzyme-catalyzed reaction: computation-supported experimental studies. Mater. Chem. Phys. 289, 126448. https://doi.org/10.1016/j.molliq.2023.123082 (2022).

    Google Scholar 

  50. Fajriyah, N. N. et al. Indonesia herbal medicine and its active compounds for anti-diabetic treatment: a systematic mini review. Moroccan J. Chem. 11(4), 948–964. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i04.40481 (2023).

  51. Li, Y. H. et al. Seignette salt induced defects in Zr-MOFs for boosted Pb(Ⅱ) adsorption: universal strategy and mechanism insight. Chem. Eng. J. 442, 136276. https://doi.org/10.1016/j.cej.2022.136276 (2022).

    Google Scholar 

  52. Bassam, A. et al. Synthesis of geopolymer powder and beads based on red clay waste for the adsorption of methyl orange dye from aqueous solutions: characterization, application of response surface methodology, and cost analysis. Sustain. Chem. Pharm. 39, 101575. https://doi.org/10.1016/j.scp.2024.101575 (2024).

    Google Scholar 

  53. Xu, H. et al. Preparation of hierarchically floral ZIF-8 derived carbon@polyaniline@Ni/Al layered double hydroxides composite with outstanding removal phenomenon for saccharin. Chem. Eng. J. 450, 138127. https://doi.org/10.1016/j.cej.2022.138127 (2022).

    Google Scholar 

  54. Xu, H., Zhu, S., Xia, M., Wang, F. & Ju, X. Three-dimension hierarchical composite via in-situ growth of Zn/Al layered double hydroxide plates onto polyaniline-wrapped carbon sphere for efficient Naproxen removal. J. Hazard. Mater. 423, 127192. https://doi.org/10.1016/j.jhazmat.2021.127192 (2022).

    Google Scholar 

  55. Radi, S. et al. A novel environment-friendly hybrid material based on a modified silica gel with a bispyrazole derivative for the removal of ZnII, PbII, CdII and CuII traces from aqueous solutions. Inorg. Chem. Front. 4, 1821–1831. https://doi.org/10.1039/C7QI00322F (2017).

    Google Scholar 

  56. Tran, T. V. et al. Effective mitigation of single-component and mixed textile dyes from aqueous media using recyclable graphene-based nanocomposite. Environ. Sci. Pollut Res. 29, 32120–32141. https://doi.org/10.1007/s11356-022-18570-y (2022).

    Google Scholar 

  57. Bouyarmane, H. et al. Pyridine and phenol removal using natural and synthetic apatites as low cost sorbents: influence of porosity and surface interactions. J. Hazard. Mater. 181, 736–741. https://doi.org/10.1016/j.jhazmat.2010.05.074 (2010).

    Google Scholar 

  58. Khan, M. A. et al. Facile one-step economical methodology of metal free g-C3N4 synthesis with remarkable photocatalytic performance under visible light to degrade trans-resveratrol. J. Hazard. Mater. 367, 293–303. https://doi.org/10.1016/j.jhazmat.2018.12.095 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Ongoing Research Funding Program (ORF-2026-566), King Saud University, Riyadh, Saudi Arabia.

Funding

Not applicable.

Author information

Authors and Affiliations

  1. Laboratory of Applied Chemistry of Materials, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco

    Ali Boukra, Omar Boukra, Souhayla Latifi & Sanaâ Saoiabi

  2. Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences Oujda, Mohamed 1er University, Oujda, Morocco

    Mohammed Merzouki

  3. Department of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Soussi, Rabat, Morocco

    Miloud El Karbane

  4. Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco

    Khalil Azzaoui

  5. Laboratory of Industrial Engineering, Energy and the Environment (LI3E), SUPMTI, Rabat, Morocco

    Khalil Azzaoui

  6. Department of Chemistry, An-Najah National University, P. O. Box 7, Nablus, Palestine

    Shehdeh Jodeh

  7. Euromed University of Fes, UEMF, Fez, Morocco

    Belkheir Hammouti

  8. Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan

    Solhe F. Alshahateet

  9. UniLaSalle, Université d’Artois, ECLORE, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026, Beauvais, France

    Larbi Rhazi

  10. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia

    Hatem A. Abuelizz

Authors
  1. Ali Boukra
    View author publications

    Search author on:PubMed Google Scholar

  2. Omar Boukra
    View author publications

    Search author on:PubMed Google Scholar

  3. Souhayla Latifi
    View author publications

    Search author on:PubMed Google Scholar

  4. Sanaâ Saoiabi
    View author publications

    Search author on:PubMed Google Scholar

  5. Mohammed Merzouki
    View author publications

    Search author on:PubMed Google Scholar

  6. Miloud El Karbane
    View author publications

    Search author on:PubMed Google Scholar

  7. Khalil Azzaoui
    View author publications

    Search author on:PubMed Google Scholar

  8. Shehdeh Jodeh
    View author publications

    Search author on:PubMed Google Scholar

  9. Belkheir Hammouti
    View author publications

    Search author on:PubMed Google Scholar

  10. Solhe F. Alshahateet
    View author publications

    Search author on:PubMed Google Scholar

  11. Larbi Rhazi
    View author publications

    Search author on:PubMed Google Scholar

  12. Hatem A. Abuelizz
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, A.B.; methodology, K.A., and O.B; software, S.L; validation, S.O, and K.A.; formal analysis, M.M.; investigation, M.EK.; resources, B.H .; data curation, S.J. and S.S; writing—original draft preparation, S.F.A, and A.B.; writing—review and editing, L.R, and, H.A.A; visualization, S.S, and B.H, All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sanaâ Saoiabi or Shehdeh Jodeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukra, A., Boukra, O., Latifi, S. et al. Innovative sodium benzoate-modified hydroxyapatite for enhanced dye removal using a combined experimental and DFT approach. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39075-5

Download citation

  • Received: 05 November 2025

  • Accepted: 02 February 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39075-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Adsorption
  • Water treatment
  • Hydroxyapatite
  • Clean water and sanitation
  • Methylene blue adsorption
  • DFT
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing