Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Comparative performance analysis of quantum feature maps for quantum kernel-based machine learning
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 February 2026

Comparative performance analysis of quantum feature maps for quantum kernel-based machine learning

  • Ravi Kumar Jha1,
  • Nikola Kasabov1,2,3,
  • Saugat Bhattacharyya1,
  • Damien Coyle1,4 &
  • …
  • Girijesh Prasad1 

Scientific Reports , Article number:  (2026) Cite this article

  • 523 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Mathematics and computing

Abstract

Quantum algorithms have become a popular research domain in recent times for discovering quantum-enhanced solutions in machine learning applications. Quantum kernels are one of the directions that establish such quantum-enhanced solutions to some extent. This work presents a detailed analysis of the quantum kernel approach leveraging feature maps and relevant hyperparameters to develop enhanced quantum kernels. The study includes a new high-order feature map and assesses five existing state-of-the-art feature maps for enhanced quantum kernel classifiers. Additionally, the significance of the rotational factor as a hyperparameter is highlighted for improving kernel performance. Also, it is analyzed whether different hyperparameter-tuned feature maps can lead to enhanced decision boundaries, demonstrating kernel expressivity. The analysis is undertaken on classification tasks using four different nonlinear datasets of distinct complexity. Comparative evaluations are also made with traditional machine learning models—Support Vector Machines (Linear and RBF), Naïve Bayes, Linear Discriminant Analysis, Decision Tree, Random Forest, Adaptive Boosting, and MLP. Overall, the study demonstrates that a well-tuned quantum feature map can enhance the generalization ability of quantum kernels, making them more effective for broader quantum-enhanced machine learning applications.

Similar content being viewed by others

Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines

Article Open access 02 February 2023

A rigorous and robust quantum speed-up in supervised machine learning

Article 12 July 2021

Quantum machine learning beyond kernel methods

Article Open access 31 January 2023

Data availability

The Breast Cancer Wisconsin (Diagnostic) data is available in Kaggle as well as can be obtained from the UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic)56.

References

  1. Feynman, R. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Google Scholar 

  2. Alberts, G. et al. Accelerating quantum computer developments. EPJ Quantum Technol. 8, 18. https://doi.org/10.1140/epjqt/s40507-021-00107-w (2021).

    Google Scholar 

  3. Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information (Cambridge University Press, 2002).

  4. Deutsch, D. & Richard, J. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558. https://doi.org/10.1098/rspa.1992.0167 (1992).

    Google Scholar 

  5. Shor, P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509. https://doi.org/10.1137/S0036144598347011 (1997).

    Google Scholar 

  6. Deutsch, D. Quantum theory, the church–turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).

    Google Scholar 

  7. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. der Phys. Prog. Phys. 48, 771–783 (2000).

    Google Scholar 

  8. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53. https://doi.org/10.1038/nature08812 (2010).

    Google Scholar 

  9. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212. https://doi.org/10.1038/s41586-019-0980-2 (2019).

    Google Scholar 

  10. Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278. https://doi.org/10.1038/s41567-019-0648-8 (2019).

    Google Scholar 

  11. Peral-García, D., Cruz-Benito, J. & García-Peñalvo, F. J. Systematic literature review: Quantum machine learning and its applications. Comput. Sci. Rev. 51, 100619. https://doi.org/10.1016/j.cosrev.2024.100619 (2024).

    Google Scholar 

  12. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202. https://doi.org/10.1038/nature23474 (2017).

    Google Scholar 

  13. Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172–185. https://doi.org/10.1080/00107514.2014.964942 (2015).

    Google Scholar 

  14. Wang, Y. & Liu, J. A comprehensive review of quantum machine learning: From NISQ to fault tolerance. Rep. Prog. Phys. https://doi.org/10.1088/1361-6633/ad7f69 (2024).

    Google Scholar 

  15. Blekos, K. et al. A review on quantum approximate optimization algorithm and its variants. Phys. Rep. 1068, 1–66. https://doi.org/10.1016/j.physrep.2024.03.002 (2024).

    Google Scholar 

  16. Zhang, Y. & Ni, Q. Recent advances in quantum machine learning. Quantum Eng. 2, e34. https://doi.org/10.1002/que2.34 (2020).

    Google Scholar 

  17. Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17, 1013–1017. https://doi.org/10.1038/s41567-021-01287-z (2021).

    Google Scholar 

  18. Dutta, S. S., Sandeep, S., Nandhini, D. & Amutha, S. Hybrid quantum neural networks: Harnessing dressed quantum circuits for enhanced tsunami prediction via earthquake data fusion. EPJ Quantum Technol. 12, 4. https://doi.org/10.1140/epjqt/s40507-024-00303-4 (2025).

    Google Scholar 

  19. Jerbi, S. et al. Quantum machine learning beyond kernel methods. Nat. Commun. 14, 517. https://doi.org/10.1038/s41467-023-36159-y (2023).

    Google Scholar 

  20. Krovi, H. Improved quantum algorithms for linear and nonlinear differential equations. Quantum 7, 913. https://doi.org/10.22331/q-2023-02-02-913 (2023).

    Google Scholar 

  21. Vasques, X., Paik, H. & Cif, L. Application of quantum machine learning using quantum kernel algorithms on multiclass neuron m-type classification. Sci. Rep. 13, 11541. https://doi.org/10.1038/s41598-023-38558-z (2023).

    Google Scholar 

  22. Tomono, T. & Natsubori, S. Performance of quantum kernel on initial learning process. EPJ Quantum Technol. 9, 35. https://doi.org/10.1140/epjqt/s40507-022-00157-8 (2022).

    Google Scholar 

  23. Moradi, S. et al. Clinical data classification with noisy intermediate scale quantum computers. Sci. Rep. 12, 1851. https://doi.org/10.1038/s41598-022-05971-9 (2022).

    Google Scholar 

  24. Chen, S.Y.-C., Huang, C.-M., Hsing, C.-W. & Kao, Y.-J. An end-to-end trainable hybrid classical-quantum classifier. Mach. Learn. Sci. Technol. 2, 045021. https://doi.org/10.1088/2632-2153/ac104d (2021).

    Google Scholar 

  25. Mari, A., Bromley, T. R., Izaac, J., Schuld, M. & Killoran, N. Transfer learning in hybrid classical-quantum neural networks. Quantum 4, 340. https://doi.org/10.22331/q-2020-10-09-340 (2020).

    Google Scholar 

  26. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79. https://doi.org/10.22331/q-2018-08-06-79 (2018).

    Google Scholar 

  27. Gebhart, V. et al. Learning quantum systems. Nat. Rev. Phys. 5, 141–156. https://doi.org/10.1038/s42254-022-00552-1 (2023).

    Google Scholar 

  28. Livingston, W. P. et al. Experimental demonstration of continuous quantum error correction. Nat. Commun. 13, 2307. https://doi.org/10.1038/s41467-022-29906-0 (2022).

    Google Scholar 

  29. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213. https://doi.org/10.1038/ncomms5213 (2014).

    Google Scholar 

  30. Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309. https://doi.org/10.1103/PhysRevA.98.032309 (2018).

    Google Scholar 

  31. Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308. https://doi.org/10.1103/PhysRevA.101.032308 (2020).

    Google Scholar 

  32. Chen, S.Y.-C., Wei, T.-C., Zhang, C., Yu, H. & Yoo, S. Quantum convolutional neural networks for high energy physics data analysis. Phys. Rev. Res. 4, 013231. https://doi.org/10.1103/PhysRevResearch.4.013231 (2022).

    Google Scholar 

  33. Shirai, N., Kubo, K., Mitarai, K. & Fujii, K. Quantum tangent kernel. Phys. Rev. Res. 6, 033179. https://doi.org/10.1103/PhysRevResearch.6.033179 (2024).

    Google Scholar 

  34. Zhou, X., Yu, J., Tan, J. & Jiang, T. Quantum kernel estimation-based quantum support vector regression. Quantum Inf. Process. 23, 29. https://doi.org/10.1007/s11128-023-04231-7 (2024).

    Google Scholar 

  35. Paine, A. E., Elfving, V. E. & Kyriienko, O. Quantum kernel methods for solving regression problems and differential equations. Phys. Rev. A 107, 032428. https://doi.org/10.1103/PhysRevA.107.032428 (2023).

    Google Scholar 

  36. Blank, C., Park, D. K., Rhee, J.-K.K. & Petruccione, F. Quantum classifier with tailored quantum kernel. NPJ Quantum Inf. 6, 41. https://doi.org/10.1038/s41534-020-0272-6 (2020).

    Google Scholar 

  37. Suzuki, Y. et al. Analysis and synthesis of feature map for kernel-based quantum classifier. Quantum Mach. Intell. 2, 1–9. https://doi.org/10.1007/s42484-020-00020-y (2020).

    Google Scholar 

  38. Cortes, C. Support-vector networks. Mach. Learn. (1995).

  39. Schuld, M. Supervised quantum machine learning models are kernel methods. Preprint at arXiv:2101.11020 (2021).

  40. Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504. https://doi.org/10.1103/PhysRevLett.122.040504 (2019).

    Google Scholar 

  41. Park, J.-E., Quanz, B., Wood, S., Higgins, H. & Harishankar, R. Practical application improvement to quantum SVM: Theory to practice. Preprint at arXiv:2012.07725 (2020).

  42. Altares-López, S., Ribeiro, A. & García-Ripoll, J. J. Automatic design of quantum feature maps. Quantum Sci. Technol. 6, 045015. https://doi.org/10.1088/2058-9565/ac1ab1 (2021).

    Google Scholar 

  43. Mengoni, R. & Di Pierro, A. Kernel methods in quantum machine learning. Quantum Mach. Intell. 1, 65–71. https://doi.org/10.1007/s42484-019-00007-4 (2019).

    Google Scholar 

  44. Park, D. K., Blank, C. & Petruccione, F. The theory of the quantum kernel-based binary classifier. Phys. Lett. A 384, 126422. https://doi.org/10.1016/j.physleta.2020.126422 (2020).

    Google Scholar 

  45. Jha, R. K., Kasabov, N., Bhattacharyya, S., Coyle, D. & Prasad, G. A hybrid spiking neural network-quantum framework for spatio-temporal data classification: A case study on EEG data. EPJ Quantum Technol. 12, 1–23 (2025).

    Google Scholar 

  46. Jha, R. K., Kasabov, N., Coyle, D., Bhattacharyya, S. & Prasad, G. Performance analysis of quantum-enhanced kernel classifiers based on feature maps: A case study on EEG-BCI data. In International conference on neural information processing, 371–383 (Springer, 2024).

  47. Goldberg, L. A. & Guo, H. The complexity of approximating complex-valued Ising and Tutte partition functions. Comput. Complexity. 26, 765–833. https://doi.org/10.1007/s00037-017-0162-2 (2017).

    Google Scholar 

  48. Rath, M. & Date, H. Quantum data encoding: A comparative analysis of classical-to-quantum mapping techniques and their impact on machine learning accuracy. EPJ Quantum Technol. 11, 72. https://doi.org/10.1140/epjqt/s40507-024-00285-3 (2024).

    Google Scholar 

  49. Street, W. N., Wolberg, W. H. & Mangasarian, O. L. Nuclear feature extraction for breast tumor diagnosis. Biomed. Image Process. Biomed. Visual. 1905, 861–870. https://doi.org/10.1117/12.148698 (1993).

    Google Scholar 

  50. Kursa, M. B., Jankowski, A. & Rudnicki, W. R. Boruta-a system for feature selection. Fund. Inform. 101, 271–285. https://doi.org/10.3233/FI-2010-288 (2010).

    Google Scholar 

  51. Badillo, S. et al. An introduction to machine learning. Clin. Pharmacol. Ther. 107, 871–885. https://doi.org/10.1002/cpt.1796 (2020).

    Google Scholar 

  52. Chicco, D. & Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation. BMC Genomics 21, 1–13. https://doi.org/10.1186/s12864-019-6413-7 (2020).

    Google Scholar 

  53. Bergholm, V. et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. Preprint at arXiv:1811.04968 (2018).

  54. Gratsea, A. & Huembeli, P. Exploring quantum perceptron and quantum neural network structures with a teacher-student scheme. Quantum Mach. Intell. 4, 2. https://doi.org/10.1007/s42484-021-00058-6 (2022).

    Google Scholar 

  55. Egginger, S., Sakhnenko, A. & Lorenz, J. M. A hyperparameter study for quantum kernel methods. Quantum Mach. Intell. 6, 44. https://doi.org/10.1007/s42484-024-00172-1 (2024).

    Google Scholar 

  56. UCI Machine Learning Repository. Breast cancer wisconsin (diagnostic) data set. https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic.

Download references

Acknowledgements

The authors acknowledge the partial support provided by the Ulster University Vice-Chancellor Research Scholarship for RJ. GP and SB acknowledge the partial support from the UKRI Strength in Places Project (81801): Smart Nano-Manufacturing Corridor. NK acknowledges the George Moor Professor Chair position (01.03.2020-01.03.2024).

Author information

Authors and Affiliations

  1. Intelligent Systems Research Centre, Ulster University, Londonderry, BT48 7JL, UK

    Ravi Kumar Jha, Nikola Kasabov, Saugat Bhattacharyya, Damien Coyle & Girijesh Prasad

  2. Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, 1020, New Zealand

    Nikola Kasabov

  3. Institute for Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria

    Nikola Kasabov

  4. Institute for the Augmented Human, University of Bath, Bath, BA2 7AY, UK

    Damien Coyle

Authors
  1. Ravi Kumar Jha
    View author publications

    Search author on:PubMed Google Scholar

  2. Nikola Kasabov
    View author publications

    Search author on:PubMed Google Scholar

  3. Saugat Bhattacharyya
    View author publications

    Search author on:PubMed Google Scholar

  4. Damien Coyle
    View author publications

    Search author on:PubMed Google Scholar

  5. Girijesh Prasad
    View author publications

    Search author on:PubMed Google Scholar

Contributions

RJ developed the framework and data processing, designing and executing the experimental results. NK, GP, SB, and DC supervised the work with insights in results analysis. RJ prepared the original manuscript with the generation of figures and tables. All authors have reviewed and edited the manuscript.

Corresponding author

Correspondence to Ravi Kumar Jha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, R.K., Kasabov, N., Bhattacharyya, S. et al. Comparative performance analysis of quantum feature maps for quantum kernel-based machine learning. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39392-9

Download citation

  • Received: 26 May 2025

  • Accepted: 04 February 2026

  • Published: 10 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39392-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Quantum kernel
  • Feature map
  • Encoding function
  • Classification
  • Machine learning
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics