Abstract
Quantum algorithms have become a popular research domain in recent times for discovering quantum-enhanced solutions in machine learning applications. Quantum kernels are one of the directions that establish such quantum-enhanced solutions to some extent. This work presents a detailed analysis of the quantum kernel approach leveraging feature maps and relevant hyperparameters to develop enhanced quantum kernels. The study includes a new high-order feature map and assesses five existing state-of-the-art feature maps for enhanced quantum kernel classifiers. Additionally, the significance of the rotational factor as a hyperparameter is highlighted for improving kernel performance. Also, it is analyzed whether different hyperparameter-tuned feature maps can lead to enhanced decision boundaries, demonstrating kernel expressivity. The analysis is undertaken on classification tasks using four different nonlinear datasets of distinct complexity. Comparative evaluations are also made with traditional machine learning models—Support Vector Machines (Linear and RBF), Naïve Bayes, Linear Discriminant Analysis, Decision Tree, Random Forest, Adaptive Boosting, and MLP. Overall, the study demonstrates that a well-tuned quantum feature map can enhance the generalization ability of quantum kernels, making them more effective for broader quantum-enhanced machine learning applications.
Similar content being viewed by others
Data availability
The Breast Cancer Wisconsin (Diagnostic) data is available in Kaggle as well as can be obtained from the UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic)56.
References
Feynman, R. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
Alberts, G. et al. Accelerating quantum computer developments. EPJ Quantum Technol. 8, 18. https://doi.org/10.1140/epjqt/s40507-021-00107-w (2021).
Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information (Cambridge University Press, 2002).
Deutsch, D. & Richard, J. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558. https://doi.org/10.1098/rspa.1992.0167 (1992).
Shor, P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509. https://doi.org/10.1137/S0036144598347011 (1997).
Deutsch, D. Quantum theory, the church–turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).
DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. der Phys. Prog. Phys. 48, 771–783 (2000).
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53. https://doi.org/10.1038/nature08812 (2010).
Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212. https://doi.org/10.1038/s41586-019-0980-2 (2019).
Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278. https://doi.org/10.1038/s41567-019-0648-8 (2019).
Peral-García, D., Cruz-Benito, J. & García-Peñalvo, F. J. Systematic literature review: Quantum machine learning and its applications. Comput. Sci. Rev. 51, 100619. https://doi.org/10.1016/j.cosrev.2024.100619 (2024).
Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202. https://doi.org/10.1038/nature23474 (2017).
Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172–185. https://doi.org/10.1080/00107514.2014.964942 (2015).
Wang, Y. & Liu, J. A comprehensive review of quantum machine learning: From NISQ to fault tolerance. Rep. Prog. Phys. https://doi.org/10.1088/1361-6633/ad7f69 (2024).
Blekos, K. et al. A review on quantum approximate optimization algorithm and its variants. Phys. Rep. 1068, 1–66. https://doi.org/10.1016/j.physrep.2024.03.002 (2024).
Zhang, Y. & Ni, Q. Recent advances in quantum machine learning. Quantum Eng. 2, e34. https://doi.org/10.1002/que2.34 (2020).
Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17, 1013–1017. https://doi.org/10.1038/s41567-021-01287-z (2021).
Dutta, S. S., Sandeep, S., Nandhini, D. & Amutha, S. Hybrid quantum neural networks: Harnessing dressed quantum circuits for enhanced tsunami prediction via earthquake data fusion. EPJ Quantum Technol. 12, 4. https://doi.org/10.1140/epjqt/s40507-024-00303-4 (2025).
Jerbi, S. et al. Quantum machine learning beyond kernel methods. Nat. Commun. 14, 517. https://doi.org/10.1038/s41467-023-36159-y (2023).
Krovi, H. Improved quantum algorithms for linear and nonlinear differential equations. Quantum 7, 913. https://doi.org/10.22331/q-2023-02-02-913 (2023).
Vasques, X., Paik, H. & Cif, L. Application of quantum machine learning using quantum kernel algorithms on multiclass neuron m-type classification. Sci. Rep. 13, 11541. https://doi.org/10.1038/s41598-023-38558-z (2023).
Tomono, T. & Natsubori, S. Performance of quantum kernel on initial learning process. EPJ Quantum Technol. 9, 35. https://doi.org/10.1140/epjqt/s40507-022-00157-8 (2022).
Moradi, S. et al. Clinical data classification with noisy intermediate scale quantum computers. Sci. Rep. 12, 1851. https://doi.org/10.1038/s41598-022-05971-9 (2022).
Chen, S.Y.-C., Huang, C.-M., Hsing, C.-W. & Kao, Y.-J. An end-to-end trainable hybrid classical-quantum classifier. Mach. Learn. Sci. Technol. 2, 045021. https://doi.org/10.1088/2632-2153/ac104d (2021).
Mari, A., Bromley, T. R., Izaac, J., Schuld, M. & Killoran, N. Transfer learning in hybrid classical-quantum neural networks. Quantum 4, 340. https://doi.org/10.22331/q-2020-10-09-340 (2020).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79. https://doi.org/10.22331/q-2018-08-06-79 (2018).
Gebhart, V. et al. Learning quantum systems. Nat. Rev. Phys. 5, 141–156. https://doi.org/10.1038/s42254-022-00552-1 (2023).
Livingston, W. P. et al. Experimental demonstration of continuous quantum error correction. Nat. Commun. 13, 2307. https://doi.org/10.1038/s41467-022-29906-0 (2022).
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213. https://doi.org/10.1038/ncomms5213 (2014).
Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309. https://doi.org/10.1103/PhysRevA.98.032309 (2018).
Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308. https://doi.org/10.1103/PhysRevA.101.032308 (2020).
Chen, S.Y.-C., Wei, T.-C., Zhang, C., Yu, H. & Yoo, S. Quantum convolutional neural networks for high energy physics data analysis. Phys. Rev. Res. 4, 013231. https://doi.org/10.1103/PhysRevResearch.4.013231 (2022).
Shirai, N., Kubo, K., Mitarai, K. & Fujii, K. Quantum tangent kernel. Phys. Rev. Res. 6, 033179. https://doi.org/10.1103/PhysRevResearch.6.033179 (2024).
Zhou, X., Yu, J., Tan, J. & Jiang, T. Quantum kernel estimation-based quantum support vector regression. Quantum Inf. Process. 23, 29. https://doi.org/10.1007/s11128-023-04231-7 (2024).
Paine, A. E., Elfving, V. E. & Kyriienko, O. Quantum kernel methods for solving regression problems and differential equations. Phys. Rev. A 107, 032428. https://doi.org/10.1103/PhysRevA.107.032428 (2023).
Blank, C., Park, D. K., Rhee, J.-K.K. & Petruccione, F. Quantum classifier with tailored quantum kernel. NPJ Quantum Inf. 6, 41. https://doi.org/10.1038/s41534-020-0272-6 (2020).
Suzuki, Y. et al. Analysis and synthesis of feature map for kernel-based quantum classifier. Quantum Mach. Intell. 2, 1–9. https://doi.org/10.1007/s42484-020-00020-y (2020).
Cortes, C. Support-vector networks. Mach. Learn. (1995).
Schuld, M. Supervised quantum machine learning models are kernel methods. Preprint at arXiv:2101.11020 (2021).
Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504. https://doi.org/10.1103/PhysRevLett.122.040504 (2019).
Park, J.-E., Quanz, B., Wood, S., Higgins, H. & Harishankar, R. Practical application improvement to quantum SVM: Theory to practice. Preprint at arXiv:2012.07725 (2020).
Altares-López, S., Ribeiro, A. & García-Ripoll, J. J. Automatic design of quantum feature maps. Quantum Sci. Technol. 6, 045015. https://doi.org/10.1088/2058-9565/ac1ab1 (2021).
Mengoni, R. & Di Pierro, A. Kernel methods in quantum machine learning. Quantum Mach. Intell. 1, 65–71. https://doi.org/10.1007/s42484-019-00007-4 (2019).
Park, D. K., Blank, C. & Petruccione, F. The theory of the quantum kernel-based binary classifier. Phys. Lett. A 384, 126422. https://doi.org/10.1016/j.physleta.2020.126422 (2020).
Jha, R. K., Kasabov, N., Bhattacharyya, S., Coyle, D. & Prasad, G. A hybrid spiking neural network-quantum framework for spatio-temporal data classification: A case study on EEG data. EPJ Quantum Technol. 12, 1–23 (2025).
Jha, R. K., Kasabov, N., Coyle, D., Bhattacharyya, S. & Prasad, G. Performance analysis of quantum-enhanced kernel classifiers based on feature maps: A case study on EEG-BCI data. In International conference on neural information processing, 371–383 (Springer, 2024).
Goldberg, L. A. & Guo, H. The complexity of approximating complex-valued Ising and Tutte partition functions. Comput. Complexity. 26, 765–833. https://doi.org/10.1007/s00037-017-0162-2 (2017).
Rath, M. & Date, H. Quantum data encoding: A comparative analysis of classical-to-quantum mapping techniques and their impact on machine learning accuracy. EPJ Quantum Technol. 11, 72. https://doi.org/10.1140/epjqt/s40507-024-00285-3 (2024).
Street, W. N., Wolberg, W. H. & Mangasarian, O. L. Nuclear feature extraction for breast tumor diagnosis. Biomed. Image Process. Biomed. Visual. 1905, 861–870. https://doi.org/10.1117/12.148698 (1993).
Kursa, M. B., Jankowski, A. & Rudnicki, W. R. Boruta-a system for feature selection. Fund. Inform. 101, 271–285. https://doi.org/10.3233/FI-2010-288 (2010).
Badillo, S. et al. An introduction to machine learning. Clin. Pharmacol. Ther. 107, 871–885. https://doi.org/10.1002/cpt.1796 (2020).
Chicco, D. & Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation. BMC Genomics 21, 1–13. https://doi.org/10.1186/s12864-019-6413-7 (2020).
Bergholm, V. et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. Preprint at arXiv:1811.04968 (2018).
Gratsea, A. & Huembeli, P. Exploring quantum perceptron and quantum neural network structures with a teacher-student scheme. Quantum Mach. Intell. 4, 2. https://doi.org/10.1007/s42484-021-00058-6 (2022).
Egginger, S., Sakhnenko, A. & Lorenz, J. M. A hyperparameter study for quantum kernel methods. Quantum Mach. Intell. 6, 44. https://doi.org/10.1007/s42484-024-00172-1 (2024).
UCI Machine Learning Repository. Breast cancer wisconsin (diagnostic) data set. https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic.
Acknowledgements
The authors acknowledge the partial support provided by the Ulster University Vice-Chancellor Research Scholarship for RJ. GP and SB acknowledge the partial support from the UKRI Strength in Places Project (81801): Smart Nano-Manufacturing Corridor. NK acknowledges the George Moor Professor Chair position (01.03.2020-01.03.2024).
Author information
Authors and Affiliations
Contributions
RJ developed the framework and data processing, designing and executing the experimental results. NK, GP, SB, and DC supervised the work with insights in results analysis. RJ prepared the original manuscript with the generation of figures and tables. All authors have reviewed and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Jha, R.K., Kasabov, N., Bhattacharyya, S. et al. Comparative performance analysis of quantum feature maps for quantum kernel-based machine learning. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39392-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-39392-9


