Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Silicon nanoparticles ameliorate salt stress in cluster bean by improving antioxidant defense and ion homeostasis
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Silicon nanoparticles ameliorate salt stress in cluster bean by improving antioxidant defense and ion homeostasis

  • Hadis Rahimi1,
  • Seyed Abdolreza Kazemeini1,
  • Mozhgan Alinia1,
  • Seyed Mohammad Hashem Hosseini2 &
  • …
  • Mohammad Javad Ahmadi3 

Scientific Reports , Article number:  (2026) Cite this article

  • 22 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Biotechnology
  • Plant sciences

Abstract

Salinity stress is a major abiotic factor limiting crop productivity. This study investigated the efficacy of nano-silicon (NSi) and conventional silicon (Si) in mitigating salinity effects on cluster bean. Plants subjected to salinity stress (0, 6, and 12 dS m− 1) were treated with foliar applications of NSi or Si (50, 100, 200 mg L− 1). While both forms of silicon ameliorated salt-induced damage, NSi was significantly more effective. The 50 mg L− 1 NSi treatment emerged as the optimal concentration, markedly enhancing antioxidant enzyme activities, reducing oxidative stress markers (MDA and H2O2), and restoring ion homeostasis by decreasing Na+ and increasing K+ accumulation. These physiological improvements translated into agronomic benefits, with a 2.8-fold increase in seed weight under high salinity. Crucially, NSi at 50 mg L− 1 superiorly improved seed oil quality by significantly increasing the proportion of nutritionally valuable unsaturated fatty acids (C18:1, C18:2), a change strongly correlated with enhanced antioxidant capacity. The results demonstrate that NSi, particularly at 50 mg L− 1, outperforms conventional Si by more effectively bolstering the plant’s antioxidant system and ion regulation, leading to significantly higher yield and better seed quality under salt stress. This positions NSi as a potent nano-biostimulant for sustainable crop production in saline conditions.

Data availability

Data is provided within the manuscript or supplementary information files.

References

  1. Jukanti, A. K., Bhatt, R., Sharma, R. & Kalia, R. K. Morphological, agronomic, and yield characterization of cluster bean (Cyamopsis Tetragonoloba L.) germplasm accessions. J. Crop Sci. Biotechnol. 18 (2), 83–88. https://doi.org/10.1007/s12892-014-0092-3 (2015).

    Google Scholar 

  2. Alinia, M., Kazemeini, S. A., Meftahizadeh, H. & Mastinu, A. Alleviating salinity stress in Cyamopsis Tetragonoloba L. seedlings through foliar application of silicon or melatonin in arid and semi-desert environments. S Afr. J. Bot. 174, 347–359. https://doi.org/10.1016/j.sajb.2024.09.024 (2024).

    Google Scholar 

  3. Alinia, M., Kazemeini, S. A., Sabbaghi, S., Sayahi, S. & Abolghasemi, A. Asgari Lajayer, B. The effect of silicon–melatonin nanoparticles on improving germination parameters and reducing salinity toxicity by maintaining ion homeostasis in Cyamopsis Tetragonoloba L. seedlings. Agronomy 15 (2), 427. https://doi.org/10.3390/agronomy15020427 (2025).

    Google Scholar 

  4. Soni, S., Jha, A. B., Dubey, R. S. & Sharma, P. Nanowonders in agriculture: unveiling the potential of nanoparticles to boost crop resilience to salinity stress. Sci. Total Environ. 925, 171433. https://doi.org/10.1016/j.scitotenv.2024.171433 (2024).

    Google Scholar 

  5. Javed, S. A. et al. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environ. Exp. Bot. 226, 105836. https://doi.org/10.1016/j.envexpbot.2024.105836 (2024).

    Google Scholar 

  6. Kamal, M. Z. U. et al. Manure-biochar compost mitigates the soil salinity stress in tomato plants by modulating the osmoregulatory mechanism, photosynthetic pigments, and ionic homeostasis. Sci. Rep. 14 (1), 21929. https://doi.org/10.1038/s41598-024-73093-5 (2024).

    Google Scholar 

  7. Singh, A. et al. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. Environ. Geochem. Health. 46 (5), 148. https://doi.org/10.1007/s10653-024-01921-8 (2024).

    Google Scholar 

  8. Xiong, J. et al. Mitigation effect of exogenous nano-silicon on salt stress damage of rice seedlings. Int. J. Mol. Sci. 26 (1), 85. https://doi.org/10.3390/ijms26010085 (2024).

    Google Scholar 

  9. Naz, T., Iqbal, M. M., Ullah, I., Mubeen, M. A. & Ditta, A. Nano-silicon application enhances salt stress tolerance in Lens culinaris L.: a comparative study with bulk silicon. J. Plant. Nutr. 1–17. https://doi.org/10.1080/01904167.2025.2513404 (2025).

  10. Ali, M. et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea Mays L.) cultivars exposed to salinity stress. Plant. Physiol. Biochem. 158, 208–218. https://doi.org/10.1016/j.plaphy.2020.10.040 (2021).

    Google Scholar 

  11. Sarkar, M. M., Mukherjee, S., Mathur, P. & Roy, S. Exogenous nano-silicon application improves ion homeostasis, osmolyte accumulation and palliates oxidative stress in Lens culinaris under NaCl stress. Plant. Physiol. Biochem. 192, 143–161. https://doi.org/10.1016/j.plaphy.2022.10.001 (2022).

    Google Scholar 

  12. He, S. et al. Nano silicon dioxide reduces cadmium uptake, regulates nutritional homeostasis and antioxidative enzyme system in barley seedlings (Hordeum vulgare L.) under cadmium stress. Environ. Sci. Pollut Res. 30 (25), 67552–67564. https://doi.org/10.1007/s11356-023-27130-x (2023).

    Google Scholar 

  13. Patel, M., Fatnani, D. & Parida, A. K. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis Hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. Plant. Physiol. Biochem. 166, 290–313. https://doi.org/10.1016/j.plaphy.2021.06.003 (2021).

    Google Scholar 

  14. Mahmoud, A. W. M. et al. Nanopotassium, nanosilicon, and Biochar applications improve potato salt tolerance by modulating photosynthesis, water status, and biochemical constituents. Sustainability 14 (2), 723. https://doi.org/10.3390/su14020723 (2022).

    Google Scholar 

  15. Fan, N. et al. Nanosilicon alters oxidative stress and defence reactions in plants: A meta-analysis, mechanism and perspective. Environ. Sci. : Nano. 9 (10), 3742–3755. https://doi.org/10.1039/D2EN00478J (2022).

    Google Scholar 

  16. Huang, T., Li, Z., Long, Y., Zhang, F. & Pang, Z. Role of desorption-adsorption and ion exchange in isotopic and chemical (Li, B, and Sr) evolution of water following water–rock interaction. J. Hydrol. 610, 127800. https://doi.org/10.1016/j.jhydrol.2022.127800 (2022).

    Google Scholar 

  17. Ryżak, M. & Bieganowski, A. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. J. Plant. Nutr. Soil. Sci. 174 (4), 624–633. https://doi.org/10.1002/jpln.201000255 (2011).

    Google Scholar 

  18. Hardie, M., Clothier, B., Bound, S., Oliver, G. & Close, D. Does Biochar influence soil physical properties and soil water availability? Plant. Soil. 376 (1), 347–361. https://doi.org/10.1007/s11104-013-1980-x (2014).

    Google Scholar 

  19. Ojewumi, A. W., Ayoola, S. A., Abdullahi, M. H., Adeola, Z. B. & Olubunmi, S. M. Bio-fortification of agronomic attributes and biochemical molecules in black night shade as influenced by two forms of Guinea grass Biochar. Zanco J. Pure Appl. Sci. 36 (6), 77–86 (2024).

    Google Scholar 

  20. Kazemeini, S. A., Rahimi, H. & Alinia, M. Effect of salinity stress on germination and tolerance threshold of Guar (Cyamopsis Tetragonoloba l.) seed.In: 18th Iranian National & 4th International Crop Science Congress, 10–12. (2024).

  21. Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11 (5), 591–592 (1983).

    Google Scholar 

  22. Sairam, R. K., Rao, K. V. & Srivastava, G. C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant. Sci. 163 (5), 1037–1046. https://doi.org/10.1016/S0168-9452(02)00278-9 (2002).

    Google Scholar 

  23. Chance, B. & Maehly, A. C. [136] assay of catalases and peroxidases. Methods Biochem. Anal. 1, 357–424 (1955).

    Google Scholar 

  24. Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 (1), 276–287 (1971).

    Google Scholar 

  25. Aebi, H. [13] Catalase in vitro. In Methods in enzymology 105, 121–126. (Academic press, 1984).

  26. Yoshimura, K., Yabuta, Y., Ishikawa, T. & Shigeoka, S. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant. Physiol. 123 (1), 223–234. https://doi.org/10.1104/pp.123.1.223 (2000).

    Google Scholar 

  27. Havaux, M. & Kloppstech, K. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis Npq and Tt mutants. Planta 213 (6), 953–966. https://doi.org/10.1007/s004250100572 (2001).

    Google Scholar 

  28. Narayan, S., Sharma, R. K., Kumar, V., Sanyal, I. & Shirke, P. A. Alterations in plant anatomy and higher lignin synthesis provides drought tolerance in cluster bean [Cyamopsis Tetragonoloba (L.) Taub]. Plant. Physiol. Biochem. 201, 107905. https://doi.org/10.1016/j.plaphy.2023.107905 (2023).

    Google Scholar 

  29. Fattahi, S. et al. Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on Hela and BT-474 cell lines. IJMCM 3 (2), 102 (2014).

    Google Scholar 

  30. Velikova, V., Yordanov, I. & Edreva, A. J. P. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant. Sci. 151 (1), 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1 (2000).

    Google Scholar 

  31. Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125 (1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1 (1968).

    Google Scholar 

  32. Golmakani, M. T., Mendiola, J. A., Rezaei, K. & Ibáñez, E. Expanded ethanol with CO2 and pressurized Ethyl lactate to obtain fractions enriched in γ-Linolenic acid from Arthrospira platensis (Spirulina). J. Supercrit Fluids. 62, 109–115. https://doi.org/10.1016/j.supflu.2011.11.026 (2012).

    Google Scholar 

  33. Mony, C. et al. Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of nanobionics in agriculture. Environ. Sci. : Nano. 9 (10), 3659–3683. https://doi.org/10.1039/D2EN00451H (2022).

    Google Scholar 

  34. Morshedloo, M. R., Saeidi, S., Zahedi, S. M., Jahantab, E. & Ghorbanpour, M. Foliar-applied silicon and nano-silicon alter the product quality and defense system in ginger mint (Mentha gracilis R. Br.) under drought stress by inducing essential oil accumulation and antioxidant activity. J. Soil. Sci. Plant. Nutr. 25 (1), 1913–1926. https://doi.org/10.1007/s42729-025-02245-x (2025).

    Google Scholar 

  35. Farhangi-Abriz, S. & Torabian, S. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255 (3), 953–962. https://doi.org/10.1007/s00709-017-1202-0 (2018).

    Google Scholar 

  36. Sohby, M. K., Khalil, H. A., Eissa, A. M. & Fekry, W. M. Influence of nano-silicon and nano-chitosan on growth, ion content, and antioxidant defense enzyme of two citrus rootstocks under salinity conditions. Mesop. J. Agric. 51 (2), 147–166 (2023).

    Google Scholar 

  37. Abd-El-Aty, M. S., Kamara, M. M., Elgamal, W. H., Mesbah, M. I., Abomarzoka, E. A.,Alwutayd, K. M. Abdelaal, K. Exogenous application of nano-silicon, potassium sulfate,or proline enhances physiological parameters, antioxidant enzyme activities, and agronomic traits of diverse rice genotypes under water deficit conditions. Heliyon 10 (5). https://doi.org/10.1016/j.heliyon.2024.e26077 (2024).

  38. Abdi, M. J., Ghanbari Jahromi, M., Mortazavi, S. N., Jari, K., Nazarideljou, M. J. & S. & Foliar-applied silicon and selenium nanoparticles modulated salinity stress through modifying yield, biochemical attribute, and fatty acid profile of Physalis Alkekengi L. Environ. Sci. Pollut Res. 30 (45), 100513–100525. https://doi.org/10.1007/s11356-023-29450-4 (2023).

    Google Scholar 

  39. Hajihashemi, S. & Kazemi, S. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC Plant. Biol. 22 (1), 148. https://doi.org/10.1186/s12870-022-03531-x (2022).

    Google Scholar 

  40. Xiao, Z., Fan, N., Yue, L., Chen, F., Ji, H., Shu, Y. Wang, Z. Dose-dependent effects of CeO2 nanomaterials on tomato plant chemistry and insect herbivore resistance. Environ. Sci. Nano. 8 (12), 3577–3589. https://doi.org/10.1039/D1EN00837D (2021).

  41. Sepasi, M., Iranbakhsh, A., Saadatmand, S., Ebadi, M. & Oraghi Ardebili, Z. Silicon nanoparticles (SiNPs) stimulated secondary metabolism and mitigated toxicity of salinity stress in Basil (Ocimum Basilicum) by modulating gene expression: a sustainable approach for crop protection. Environ. Sci. Pollut Res. 31 (11), 16485–16496. https://doi.org/10.1007/s11356-024-32260-x (2024).

    Google Scholar 

  42. Mostafavi, S., Tavallali, V., Asadi-Gharneh, H. A. & Rowshan, V. Modulation of polyphenolic Content, essential Oils, and antioxidant activity in Zataria multiflora by Silicon-Based nanocomplexes. BioNanoSci 15 (3), 493. https://doi.org/10.1007/s12668-025-01953-z (2025).

    Google Scholar 

  43. Waters, S., Gilliham, M. & Hrmova, M. Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int. J. Mol. Sci. 14 (4), 7660–7680. https://doi.org/10.3390/ijms14047660 (2013).

    Google Scholar 

  44. Liu, B., Soundararajan, P. & Manivannan, A. Mechanisms of silicon-mediated amelioration of salt stress in plants. Plants 8 (9), 307. https://doi.org/10.3390/plants8090307 (2019).

    Google Scholar 

  45. Wang, Q., Shan, C., Zhang, P., Zhao, W., Zhu, G., Sun, Y.Rui, Y. The combination of nanotechnology and potassium: applications in agriculture. Environ. Sci. Pollut. Res. 31 (2), 1890–1906. https://doi.org/10.1007/s11356-023-31207-y (2024).

  46. Gharbi, P., Amiri, J., Mahna, N., Naseri, L. & Sadaghiani, M. R. Silicon-induced mitigation of salt stress in GF677 and GN15 rootstocks: insights into physiological, biochemical, and molecular mechanisms. BMC Plant. Biol. 25 (1), 719. https://doi.org/10.1186/s12870-025-06753-x (2025).

    Google Scholar 

  47. Alves, D. M. R., de Mello Prado, R. & Barreto, R. F. & Da Silva Carvalho, L. T. Nano-silicon and sodium mitigate Damage by potassium deficiency in Chicory. Sci. Rep. 14 (1), 16841. https://doi.org/10.1038/s41598-024-67875-0 (2024).

    Google Scholar 

  48. Rezghiyan, A., Esmaeili, H. & Farzaneh, M. Nanosilicon application changes the morphological attributes and essential oil compositions of hemp (Cannabis sativa L.) under water deficit stress. Sci. Rep. 15 (1), 3400. https://doi.org/10.1038/s41598-025-87611-6 (2025).

    Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Agricultural and Natural Resources Engineering Organization of Fars Province for their financial support of this research.

Author information

Authors and Affiliations

  1. Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran

    Hadis Rahimi, Seyed Abdolreza Kazemeini & Mozhgan Alinia

  2. Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, 71441-13131, Iran

    Seyed Mohammad Hashem Hosseini

  3. Agricultural and Natural Resources Engineering Organization of Fars Province, Shiraz, Iran

    Mohammad Javad Ahmadi

Authors
  1. Hadis Rahimi
    View author publications

    Search author on:PubMed Google Scholar

  2. Seyed Abdolreza Kazemeini
    View author publications

    Search author on:PubMed Google Scholar

  3. Mozhgan Alinia
    View author publications

    Search author on:PubMed Google Scholar

  4. Seyed Mohammad Hashem Hosseini
    View author publications

    Search author on:PubMed Google Scholar

  5. Mohammad Javad Ahmadi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization H.R., and S.A.K.; data curation, S.A.K., H.R., and M.A.; formal analysis and methodology, S.A.K., H.R., M.A., S.M.H.H., and M.J.A.; project administration, S.A.K.; visualization, H.R., S.A.K., and S.M.H.H.; writing original draft, S.A.K., M.A., and M.J.A.; writing-review and editing. S.A.K., and M.A. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Seyed Abdolreza Kazemeini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All procedures were conducted following the relevant institutional, national, and international guidelines and legislations.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, H., Kazemeini, S.A., Alinia, M. et al. Silicon nanoparticles ameliorate salt stress in cluster bean by improving antioxidant defense and ion homeostasis. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39447-x

Download citation

  • Received: 22 September 2025

  • Accepted: 05 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39447-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Antioxidant enzyme activities
  • Fatty acid profile
  • Ion homeostasis
  • Oxidative stress
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research