Abstract
Salinity stress is a major abiotic factor limiting crop productivity. This study investigated the efficacy of nano-silicon (NSi) and conventional silicon (Si) in mitigating salinity effects on cluster bean. Plants subjected to salinity stress (0, 6, and 12 dS m− 1) were treated with foliar applications of NSi or Si (50, 100, 200 mg L− 1). While both forms of silicon ameliorated salt-induced damage, NSi was significantly more effective. The 50 mg L− 1 NSi treatment emerged as the optimal concentration, markedly enhancing antioxidant enzyme activities, reducing oxidative stress markers (MDA and H2O2), and restoring ion homeostasis by decreasing Na+ and increasing K+ accumulation. These physiological improvements translated into agronomic benefits, with a 2.8-fold increase in seed weight under high salinity. Crucially, NSi at 50 mg L− 1 superiorly improved seed oil quality by significantly increasing the proportion of nutritionally valuable unsaturated fatty acids (C18:1, C18:2), a change strongly correlated with enhanced antioxidant capacity. The results demonstrate that NSi, particularly at 50 mg L− 1, outperforms conventional Si by more effectively bolstering the plant’s antioxidant system and ion regulation, leading to significantly higher yield and better seed quality under salt stress. This positions NSi as a potent nano-biostimulant for sustainable crop production in saline conditions.
Data availability
Data is provided within the manuscript or supplementary information files.
References
Jukanti, A. K., Bhatt, R., Sharma, R. & Kalia, R. K. Morphological, agronomic, and yield characterization of cluster bean (Cyamopsis Tetragonoloba L.) germplasm accessions. J. Crop Sci. Biotechnol. 18 (2), 83–88. https://doi.org/10.1007/s12892-014-0092-3 (2015).
Alinia, M., Kazemeini, S. A., Meftahizadeh, H. & Mastinu, A. Alleviating salinity stress in Cyamopsis Tetragonoloba L. seedlings through foliar application of silicon or melatonin in arid and semi-desert environments. S Afr. J. Bot. 174, 347–359. https://doi.org/10.1016/j.sajb.2024.09.024 (2024).
Alinia, M., Kazemeini, S. A., Sabbaghi, S., Sayahi, S. & Abolghasemi, A. Asgari Lajayer, B. The effect of silicon–melatonin nanoparticles on improving germination parameters and reducing salinity toxicity by maintaining ion homeostasis in Cyamopsis Tetragonoloba L. seedlings. Agronomy 15 (2), 427. https://doi.org/10.3390/agronomy15020427 (2025).
Soni, S., Jha, A. B., Dubey, R. S. & Sharma, P. Nanowonders in agriculture: unveiling the potential of nanoparticles to boost crop resilience to salinity stress. Sci. Total Environ. 925, 171433. https://doi.org/10.1016/j.scitotenv.2024.171433 (2024).
Javed, S. A. et al. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environ. Exp. Bot. 226, 105836. https://doi.org/10.1016/j.envexpbot.2024.105836 (2024).
Kamal, M. Z. U. et al. Manure-biochar compost mitigates the soil salinity stress in tomato plants by modulating the osmoregulatory mechanism, photosynthetic pigments, and ionic homeostasis. Sci. Rep. 14 (1), 21929. https://doi.org/10.1038/s41598-024-73093-5 (2024).
Singh, A. et al. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. Environ. Geochem. Health. 46 (5), 148. https://doi.org/10.1007/s10653-024-01921-8 (2024).
Xiong, J. et al. Mitigation effect of exogenous nano-silicon on salt stress damage of rice seedlings. Int. J. Mol. Sci. 26 (1), 85. https://doi.org/10.3390/ijms26010085 (2024).
Naz, T., Iqbal, M. M., Ullah, I., Mubeen, M. A. & Ditta, A. Nano-silicon application enhances salt stress tolerance in Lens culinaris L.: a comparative study with bulk silicon. J. Plant. Nutr. 1–17. https://doi.org/10.1080/01904167.2025.2513404 (2025).
Ali, M. et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea Mays L.) cultivars exposed to salinity stress. Plant. Physiol. Biochem. 158, 208–218. https://doi.org/10.1016/j.plaphy.2020.10.040 (2021).
Sarkar, M. M., Mukherjee, S., Mathur, P. & Roy, S. Exogenous nano-silicon application improves ion homeostasis, osmolyte accumulation and palliates oxidative stress in Lens culinaris under NaCl stress. Plant. Physiol. Biochem. 192, 143–161. https://doi.org/10.1016/j.plaphy.2022.10.001 (2022).
He, S. et al. Nano silicon dioxide reduces cadmium uptake, regulates nutritional homeostasis and antioxidative enzyme system in barley seedlings (Hordeum vulgare L.) under cadmium stress. Environ. Sci. Pollut Res. 30 (25), 67552–67564. https://doi.org/10.1007/s11356-023-27130-x (2023).
Patel, M., Fatnani, D. & Parida, A. K. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis Hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. Plant. Physiol. Biochem. 166, 290–313. https://doi.org/10.1016/j.plaphy.2021.06.003 (2021).
Mahmoud, A. W. M. et al. Nanopotassium, nanosilicon, and Biochar applications improve potato salt tolerance by modulating photosynthesis, water status, and biochemical constituents. Sustainability 14 (2), 723. https://doi.org/10.3390/su14020723 (2022).
Fan, N. et al. Nanosilicon alters oxidative stress and defence reactions in plants: A meta-analysis, mechanism and perspective. Environ. Sci. : Nano. 9 (10), 3742–3755. https://doi.org/10.1039/D2EN00478J (2022).
Huang, T., Li, Z., Long, Y., Zhang, F. & Pang, Z. Role of desorption-adsorption and ion exchange in isotopic and chemical (Li, B, and Sr) evolution of water following water–rock interaction. J. Hydrol. 610, 127800. https://doi.org/10.1016/j.jhydrol.2022.127800 (2022).
Ryżak, M. & Bieganowski, A. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. J. Plant. Nutr. Soil. Sci. 174 (4), 624–633. https://doi.org/10.1002/jpln.201000255 (2011).
Hardie, M., Clothier, B., Bound, S., Oliver, G. & Close, D. Does Biochar influence soil physical properties and soil water availability? Plant. Soil. 376 (1), 347–361. https://doi.org/10.1007/s11104-013-1980-x (2014).
Ojewumi, A. W., Ayoola, S. A., Abdullahi, M. H., Adeola, Z. B. & Olubunmi, S. M. Bio-fortification of agronomic attributes and biochemical molecules in black night shade as influenced by two forms of Guinea grass Biochar. Zanco J. Pure Appl. Sci. 36 (6), 77–86 (2024).
Kazemeini, S. A., Rahimi, H. & Alinia, M. Effect of salinity stress on germination and tolerance threshold of Guar (Cyamopsis Tetragonoloba l.) seed.In: 18th Iranian National & 4th International Crop Science Congress, 10–12. (2024).
Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11 (5), 591–592 (1983).
Sairam, R. K., Rao, K. V. & Srivastava, G. C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant. Sci. 163 (5), 1037–1046. https://doi.org/10.1016/S0168-9452(02)00278-9 (2002).
Chance, B. & Maehly, A. C. [136] assay of catalases and peroxidases. Methods Biochem. Anal. 1, 357–424 (1955).
Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 (1), 276–287 (1971).
Aebi, H. [13] Catalase in vitro. In Methods in enzymology 105, 121–126. (Academic press, 1984).
Yoshimura, K., Yabuta, Y., Ishikawa, T. & Shigeoka, S. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant. Physiol. 123 (1), 223–234. https://doi.org/10.1104/pp.123.1.223 (2000).
Havaux, M. & Kloppstech, K. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis Npq and Tt mutants. Planta 213 (6), 953–966. https://doi.org/10.1007/s004250100572 (2001).
Narayan, S., Sharma, R. K., Kumar, V., Sanyal, I. & Shirke, P. A. Alterations in plant anatomy and higher lignin synthesis provides drought tolerance in cluster bean [Cyamopsis Tetragonoloba (L.) Taub]. Plant. Physiol. Biochem. 201, 107905. https://doi.org/10.1016/j.plaphy.2023.107905 (2023).
Fattahi, S. et al. Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on Hela and BT-474 cell lines. IJMCM 3 (2), 102 (2014).
Velikova, V., Yordanov, I. & Edreva, A. J. P. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant. Sci. 151 (1), 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1 (2000).
Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125 (1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1 (1968).
Golmakani, M. T., Mendiola, J. A., Rezaei, K. & Ibáñez, E. Expanded ethanol with CO2 and pressurized Ethyl lactate to obtain fractions enriched in γ-Linolenic acid from Arthrospira platensis (Spirulina). J. Supercrit Fluids. 62, 109–115. https://doi.org/10.1016/j.supflu.2011.11.026 (2012).
Mony, C. et al. Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of nanobionics in agriculture. Environ. Sci. : Nano. 9 (10), 3659–3683. https://doi.org/10.1039/D2EN00451H (2022).
Morshedloo, M. R., Saeidi, S., Zahedi, S. M., Jahantab, E. & Ghorbanpour, M. Foliar-applied silicon and nano-silicon alter the product quality and defense system in ginger mint (Mentha gracilis R. Br.) under drought stress by inducing essential oil accumulation and antioxidant activity. J. Soil. Sci. Plant. Nutr. 25 (1), 1913–1926. https://doi.org/10.1007/s42729-025-02245-x (2025).
Farhangi-Abriz, S. & Torabian, S. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma 255 (3), 953–962. https://doi.org/10.1007/s00709-017-1202-0 (2018).
Sohby, M. K., Khalil, H. A., Eissa, A. M. & Fekry, W. M. Influence of nano-silicon and nano-chitosan on growth, ion content, and antioxidant defense enzyme of two citrus rootstocks under salinity conditions. Mesop. J. Agric. 51 (2), 147–166 (2023).
Abd-El-Aty, M. S., Kamara, M. M., Elgamal, W. H., Mesbah, M. I., Abomarzoka, E. A.,Alwutayd, K. M. Abdelaal, K. Exogenous application of nano-silicon, potassium sulfate,or proline enhances physiological parameters, antioxidant enzyme activities, and agronomic traits of diverse rice genotypes under water deficit conditions. Heliyon 10 (5). https://doi.org/10.1016/j.heliyon.2024.e26077 (2024).
Abdi, M. J., Ghanbari Jahromi, M., Mortazavi, S. N., Jari, K., Nazarideljou, M. J. & S. & Foliar-applied silicon and selenium nanoparticles modulated salinity stress through modifying yield, biochemical attribute, and fatty acid profile of Physalis Alkekengi L. Environ. Sci. Pollut Res. 30 (45), 100513–100525. https://doi.org/10.1007/s11356-023-29450-4 (2023).
Hajihashemi, S. & Kazemi, S. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC Plant. Biol. 22 (1), 148. https://doi.org/10.1186/s12870-022-03531-x (2022).
Xiao, Z., Fan, N., Yue, L., Chen, F., Ji, H., Shu, Y. Wang, Z. Dose-dependent effects of CeO2 nanomaterials on tomato plant chemistry and insect herbivore resistance. Environ. Sci. Nano. 8 (12), 3577–3589. https://doi.org/10.1039/D1EN00837D (2021).
Sepasi, M., Iranbakhsh, A., Saadatmand, S., Ebadi, M. & Oraghi Ardebili, Z. Silicon nanoparticles (SiNPs) stimulated secondary metabolism and mitigated toxicity of salinity stress in Basil (Ocimum Basilicum) by modulating gene expression: a sustainable approach for crop protection. Environ. Sci. Pollut Res. 31 (11), 16485–16496. https://doi.org/10.1007/s11356-024-32260-x (2024).
Mostafavi, S., Tavallali, V., Asadi-Gharneh, H. A. & Rowshan, V. Modulation of polyphenolic Content, essential Oils, and antioxidant activity in Zataria multiflora by Silicon-Based nanocomplexes. BioNanoSci 15 (3), 493. https://doi.org/10.1007/s12668-025-01953-z (2025).
Waters, S., Gilliham, M. & Hrmova, M. Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int. J. Mol. Sci. 14 (4), 7660–7680. https://doi.org/10.3390/ijms14047660 (2013).
Liu, B., Soundararajan, P. & Manivannan, A. Mechanisms of silicon-mediated amelioration of salt stress in plants. Plants 8 (9), 307. https://doi.org/10.3390/plants8090307 (2019).
Wang, Q., Shan, C., Zhang, P., Zhao, W., Zhu, G., Sun, Y.Rui, Y. The combination of nanotechnology and potassium: applications in agriculture. Environ. Sci. Pollut. Res. 31 (2), 1890–1906. https://doi.org/10.1007/s11356-023-31207-y (2024).
Gharbi, P., Amiri, J., Mahna, N., Naseri, L. & Sadaghiani, M. R. Silicon-induced mitigation of salt stress in GF677 and GN15 rootstocks: insights into physiological, biochemical, and molecular mechanisms. BMC Plant. Biol. 25 (1), 719. https://doi.org/10.1186/s12870-025-06753-x (2025).
Alves, D. M. R., de Mello Prado, R. & Barreto, R. F. & Da Silva Carvalho, L. T. Nano-silicon and sodium mitigate Damage by potassium deficiency in Chicory. Sci. Rep. 14 (1), 16841. https://doi.org/10.1038/s41598-024-67875-0 (2024).
Rezghiyan, A., Esmaeili, H. & Farzaneh, M. Nanosilicon application changes the morphological attributes and essential oil compositions of hemp (Cannabis sativa L.) under water deficit stress. Sci. Rep. 15 (1), 3400. https://doi.org/10.1038/s41598-025-87611-6 (2025).
Acknowledgements
The authors would like to gratefully acknowledge the Agricultural and Natural Resources Engineering Organization of Fars Province for their financial support of this research.
Author information
Authors and Affiliations
Contributions
Conceptualization H.R., and S.A.K.; data curation, S.A.K., H.R., and M.A.; formal analysis and methodology, S.A.K., H.R., M.A., S.M.H.H., and M.J.A.; project administration, S.A.K.; visualization, H.R., S.A.K., and S.M.H.H.; writing original draft, S.A.K., M.A., and M.J.A.; writing-review and editing. S.A.K., and M.A. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethics approval
All procedures were conducted following the relevant institutional, national, and international guidelines and legislations.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Rahimi, H., Kazemeini, S.A., Alinia, M. et al. Silicon nanoparticles ameliorate salt stress in cluster bean by improving antioxidant defense and ion homeostasis. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39447-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-39447-x