Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Network pharmacology and molecular simulation reveal the entourage effect mechanisms of psilocybin-producing mushrooms on the brain
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Network pharmacology and molecular simulation reveal the entourage effect mechanisms of psilocybin-producing mushrooms on the brain

  • Zurika Murray1,
  • Angélique Lewies2,
  • Johannes Frederik Wentzel1,
  • Marietjie Schutte-Smith3,
  • Elizabeth Erasmus3,
  • Anwar Noreljaleel3,
  • Hendrik Visser3,
  • Anke Wilhelm3 &
  • …
  • Abdul Rashid Issahaku  ORCID: orcid.org/0000-0002-9012-436X3 

Scientific Reports , Article number:  (2026) Cite this article

  • 639 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cellular signalling networks
  • Computational biology and bioinformatics

Abstract

The therapeutic potential of psilocybin in treating psychiatric disorders has gained attention recently. While most research has focused on isolated psilocybin, evidence suggests that whole mushroom extracts exhibit greater efficacy, implicating a possible entourage effect of additional bioactive compounds. This study aimed to elucidate the holistic neuropharmacological effects of psilocybin-producing mushroom compounds through a computational framework incorporating network pharmacology, molecular docking, and molecular dynamics. Fifteen mushroom-derived compounds were identified from literature, of which eight exhibited favorable pharmacokinetic profiles. Target prediction and network analysis identified 44 brain-localized proteins with partial biological connectivity. Functional enrichment and pathway analyses implicate key neurological pathways. The compounds exhibited strong docking scores to neurologically relevant targets. Several compounds formed stable salt bridges with the Asp155 residue of HTR2A, mirroring serotonin’s binding behavior. Molecular dynamics simulations further confirmed high residence stability of the compounds within the binding pockets of HTR2A and MAOA. These findings support a mechanistic rationale for the enhanced efficacy of whole mushroom extracts over isolated psilocybin and underscore the therapeutic potential of other constituent compounds. The study highlights the importance of multi-target interactions in mediating neuropsychiatric effects and provides a foundation for further investigations into the synergistic roles of these compounds in CNS modulation.

Data availability

All the data is available in the public databases mentioned below: https://davidbioinformatics.nih.gov/https://www.bindingdb.org/rwd/bind/index.jsphttps://www.disgenet.org/https://string-db.org/.

References

  1. Guzmán, G. Hallucinogenic mushrooms in mexico: an overview. Econ. Bot. 62, 404–412 (2008).

    Google Scholar 

  2. Griffiths, R. R., Richards, W. A., McCann, U. & Jesse, R. Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacol. (Berl). 187, 268–283 (2006).

    Google Scholar 

  3. Plazas, E. & Faraone, N. Indole Alkaloids from Psychoactive Mushrooms: Chemical and Pharmacological Potential as Psychotherapeutic Agents. Biomedicines 11, (2023).

  4. Nichols, D. E. Psilocybin: from ancient magic to modern medicine. J. Antibiot. (Tokyo). 73, 679–686 (2020).

    Google Scholar 

  5. Grob, C. S. et al. Pilot study of psilocybin treatment for anxiety in patients with Advanced-Stage cancer. Arch. Gen. Psychiatry. 68, 71–78 (2011).

    Google Scholar 

  6. Hasler, F., Grimberg, U., Benz, M. A., Huber, T. & Vollenweider, F. X. Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacol. (Berl). 172, 145–156 (2004).

    Google Scholar 

  7. Psychedelic therapy -. Statistics & Facts | Statista. https://www.statista.com/topics/4277/psychedelic-therapy/

  8. Gotvaldová, K. et al. Stability of psilocybin and its four analogs in the biomass of the psychotropic mushroom psilocybe Cubensis. Drug Test. Anal. 13, 439–446 (2021).

    Google Scholar 

  9. Pellegrini, M. et al. Magic truffles or philosopher’s stones: a legal way to sell psilocybin? Drug Test. Anal. 5, 182–185 (2013).

    Google Scholar 

  10. Prochazkova, L. et al. Exploring the effect of microdosing psychedelics on creativity in an open-label natural setting. Psychopharmacol. (Berl). 235, 3401–3413 (2018).

    Google Scholar 

  11. Kryskow, P. et al. The mushroom was more alive and vibrant: patient reports of synthetic versus organic forms of psilocybin. J. Psychedelic Stud. https://doi.org/10.1556/2054.2024.00379 (2024).

    Google Scholar 

  12. MATSUSHIMA, Y., KIKURA-HANAJIRI, S. H. I. R. O. T. A. O., GODA, R., EGUCHI, F. & Y. & Effects of psilocybe argentipes on Marble-Burying behavior in mice. Biosci. Biotechnol. Biochem. 73, 1866–1868 (2009).

    Google Scholar 

  13. Shahar, O. et al. Effect of chemically synthesized psilocybin and psychedelic mushroom extract on molecular and metabolic profiles in mouse brain. Mol. Psychiatry. 29, 2059–2073. (2024). https://doi.org/10.1038/s41380-024-02477-w

    Google Scholar 

  14. Kim, S. et al. PubChem substance and compound databases. Nucleic Acids Res. 44, D1202–D1213 (2016).

    Google Scholar 

  15. Daina, A., Michielin, O., Zoete, V. & SwissADME A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717. (2017). https://doi.org/10.1038/srep42717

    Google Scholar 

  16. Wu, D. et al. The blood–brain barrier: structure, regulation, and drug delivery. Signal. Transduct. Target. Ther. 8, 217 (2023).

    Google Scholar 

  17. Gilson, M. K. et al. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems Pharmacology. Nucleic Acids Res. 44, D1045–D1053 (2016).

    Google Scholar 

  18. Daina, A., Michielin, O. & Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 47, W357–W364 (2019).

    Google Scholar 

  19. Durham, J., Zhang, J., Humphreys, I. R., Pei, J. & Cong, Q. Recent advances in predicting and modeling protein–protein interactions. Trends Biochem. Sci. 48, 527–538 (2023).

    Google Scholar 

  20. Shannon, P. et al. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. Genome Res. 13, 2498–2504 (2003).

  21. Palukuri, M. V., Patil, R. S. & Marcotte, E. M. Molecular complex detection in protein interaction networks through reinforcement learning. BMC Bioinform. 24, 306 (2023).

    Google Scholar 

  22. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677 (2025).

    Google Scholar 

  23. Tang, D. et al. SRplot: A free online platform for data visualization and graphing. PLoS One. 18, 1–8 (2023).

    Google Scholar 

  24. Friesner, R. A. et al. Glide: a new approach for Rapid, accurate Docking and Scoring. 1. Method and assessment of Docking accuracy. J. Med. Chem. 47, 1739 (2004).

    Google Scholar 

  25. Lu, C. et al. OPLS4: improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 17, 4291–4300 (2021).

    Google Scholar 

  26. Schrödinger Release 2024-2: LigPrep, Schrödinger, LLC, New York, NY, 2024.

  27. Shaw, D. E. Desmond Molecular Dynamics System. (2021).

  28. Issahaku, A. R., Wilhelm, A., Schutte-Smith, M., Erasmus, E. & Visser, H. Elucidating the binding mechanisms of GABA and muscimol as an avenue to discover novel GABA-mimetic small molecules. J. Biomol. Struct. Dyn. 1–16. https://doi.org/10.1080/07391102.2024.2331088 (2024).

  29. Zanger, U. M. & Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138, 103–141 (2013).

    Google Scholar 

  30. Zhang, Y. et al. CYP3A4 and CYP3A5: the crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ 12, e18636 (2024).

    Google Scholar 

  31. Passie, T., Seifert, J., Schneider, U. & Emrich, H. M. The Pharmacology of psilocybin. Addict. Biol. 7, 357–364 (2002).

    Google Scholar 

  32. Halberstadt, A. L. & Geyer, M. A. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61, 364–381 (2011).

    Google Scholar 

  33. Tylš, F., Páleníček, T. & Horáček, J. Psilocybin–summary of knowledge and new perspectives. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 24, 342–356 (2014).

    Google Scholar 

  34. Mahapatra, A. & Gupta, R. Role of psilocybin in the treatment of depression. Ther. Adv. Psychopharmacol. 7, 54–56 (2017).

    Google Scholar 

  35. de Veen, B. T. H., Schellekens, A. F. A., Verheij, M. M. M. & Homberg, J. R. Psilocybin for treating substance use disorders? Expert Rev. Neurother. 17, 203–212 (2017).

    Google Scholar 

  36. Fischer, A. G. & Ullsperger, M. An update on the role of serotonin and its interplay with dopamine for reward. Front. Hum. Neurosci. 11, 484 (2017).

    Google Scholar 

  37. Alex, K. D. & Pehek, E. A. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol. Ther. 113, 296–320 (2007).

    Google Scholar 

  38. Di Giovanni, G., Di Matteo, V. & Esposito, E. Serotonin-dopamine interaction: experimental evidence and therapeutic relevance. Preface. Progress in brain research. 172 ix (2008).

  39. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. in Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications (ed. Stahl, S. M.) i–i. Cambridge University Press, (2021).

  40. Millan, M. J. Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol. Ther. 110, 135–370 (2006).

    Google Scholar 

  41. Werner, E. R., Blau, N. & Thöny, B. Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem. J. 438, 397–414 (2011).

    Google Scholar 

  42. Singh, D. P., Fatma, N., Kimura, A., Chylack, L. T. & Shinohara, T. LEDGF binds to heat shock and Stress-Related element to activate the expression of Stress-Related genes. Biochem. Biophys. Res. Commun. 283, 943–955 (2001).

    Google Scholar 

  43. Su, T. et al. Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of a Tobacco-specific Carcinogen, 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone1. Cancer Res. 60, 5074–5079 (2000).

    Google Scholar 

  44. Grimm, O., Kraehenmann, R., Preller, K. H., Seifritz, E. & Vollenweider, F. X. Psilocybin modulates functional connectivity of the amygdala during emotional face discrimination. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 28, 691–700 (2018).

    Google Scholar 

  45. Zamaria, J. A. A phenomenological examination of psilocybin use and its positive and persisting aftereffects. Neuroquantology 14, 285–296 (2016).

    Google Scholar 

  46. Mithoefer, M. C., Grob, C. S. & Brewerton, T. D. Novel psychopharmacological therapies for psychiatric disorders: psilocybin and MDMA. Lancet Psychiatry. 3, 481–488 (2016).

    Google Scholar 

  47. Kometer, M., Schmidt, A., Jäncke, L. & Vollenweider, F. X. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. Off J. Soc. Neurosci. 33, 10544–10551 (2013).

    Google Scholar 

  48. Tagliazucchi, E., Carhart-Harris, R., Leech, R., Nutt, D. & Chialvo, D. R. Enhanced repertoire of brain dynamical States during the psychedelic experience. Hum. Brain Mapp. 35, 5442–5456 (2014).

    Google Scholar 

  49. Lord, L. D. et al. Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. Neuroimage 199, 127–142 (2019).

    Google Scholar 

  50. Friebe, A. & Koesling, D. Regulation of nitric oxide-sensitive Guanylyl cyclase. Circ. Res. 93, 96–105 (2003).

    Google Scholar 

  51. Lucas, K. A. et al. Guanylyl cyclases and signaling by Cyclic GMP. Pharmacol. Rev. 52, 375–414 (2000).

    Google Scholar 

  52. Carhart-Harris, R. L. et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacol. (Berl). 235, 399–408 (2018).

    Google Scholar 

  53. Grieco, S. F. et al. Psychedelics and neural plasticity: therapeutic implications. J. Neurosci. Off J. Soc. Neurosci. 42, 8439–8449 (2022).

    Google Scholar 

  54. Zheng, Z., Yingtong, Z., Wu, J. & and Increased neuroplasticity May protect against cardiovascular disease. Int. J. Neurosci. 123, 599–608 (2013).

    Google Scholar 

  55. Numata, G., Takimoto, E. & Cyclic GMP and PKG signaling in heart failure. Front. Pharmacol. 13, 1–11 (2022).

    Google Scholar 

  56. Nkadimeng, S. M., Nabatanzi, A., Steinmann, C. M. L. & Eloff, J. N. Phytochemical, cytotoxicity, antioxidant and anti-inflammatory effects of Psilocybe natalensis magic mushroom. Plants 9 (9), 1127. (2020). https://doi.org/10.3390/plants9091127

    Google Scholar 

  57. Whelan, A. & Johnson, M. I. Lysergic acid diethylamide and psilocybin for the management of patients with persistent pain: a potential role? Pain Manag. 8, 217–229 (2018).

    Google Scholar 

  58. Repasky, M. P., Shelley, M. & Friesner, R. A. Flexible ligand docking with Glide. Current Protocols in Bioinformatics, Chapter 8, Unit 8.12 (2007). https://doi.org/10.1002/0471250953.bi0812s18

  59. Schrödinger, L. L. C. & Maestro Version 13.9.138; MMshare, Version 6.5.138, Release 2024-1. (2024).

  60. Wang, C. D., Gallaher, T. K. & Shih, J. C. Site-directed mutagenesis of the serotonin 5-hydroxytrypamine2 receptor: identification of amino acids necessary for ligand binding and receptor activation. Mol. Pharmacol. 43, 931–940 (1993).

    Google Scholar 

  61. Kristiansen, K. et al. A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT2A serotonin receptor but does not participate in activation via a Salt-Bridge disruption Mechanism11This study. J. Pharmacol. Exp. Ther. 293, 735–746 (2000).

    Google Scholar 

  62. Kim, K. et al. Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588e19 (2020).

    Google Scholar 

  63. Dassault Systèmes, B. I. O. V. I. A. BIOVIA Discovery Studio Client, Version 19.1.0.18287. (2019).

  64. Myburg, T., Petzer, A. & Petzer, J. P. The Inhibition of monoamine oxidase by Harmine derivatives. Results Chem. 4, 100607 (2022).

    Google Scholar 

  65. Goff, R. et al. Determination of psilocybin and Psilocin content in multiple psilocybe Cubensis mushroom strains using liquid chromatography - tandem mass spectrometry. Anal. Chim. Acta. 1288, 342161 (2024).

    Google Scholar 

  66. Kurzbaum, E., Páleníček, T., Shrchaton, A., Azerrad, S. & Dekel, Y. Exploring Psilocybe cubensis strains: cultivation techniques, psychoactive compounds, genetics and research gaps. J. Fungi. 11 (2), 99. (2025). https://doi.org/10.3390/jof11020099

    Google Scholar 

  67. Holloway, T. & González-Maeso, J. Epigenetic mechanisms of serotonin signaling. ACS Chem. Neurosci. 6, 1099–1109 (2015).

    Google Scholar 

  68. Vollenweider, F. X., Vontobel, P., Hell, D. & Leenders, K. L. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man–a PET study with [11 C]raclopride. Neuropsychopharmacol. Off Publ Am. Coll. Neuropsychopharmacol. 20, 424–433 (1999).

    Google Scholar 

  69. Andrade, R. Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology 61, 382–386 (2011).

    Google Scholar 

  70. Carhart-Harris, R. L. et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. U. S. A. 109, 2138–2143 (2012).

  71. Smausz, R., Neill, J. & Gigg, J. Neural mechanisms underlying psilocybin’s therapeutic potential - the need for preclinical in vivo electrophysiology. J. Psychopharmacol. 36, 781–793 (2022).

    Google Scholar 

  72. Nichols, C. D. Serotonin 5-HT(2A) Receptor Function as a Contributing Factor to Both Neuropsychiatric and Cardiovascular Diseases. Cardiovasc. Psychiatry Neurol. 475108 (2009). (2009).

  73. Wsół, A. Cardiovascular safety of psychedelic medicine: current status and future directions. Pharmacol. Rep. 75, 1362–1380 (2023).

    Google Scholar 

  74. Blei, F. et al. Simultaneous production of psilocybin and a cocktail of β-Carboline monoamine oxidase inhibitors in ‘Magic’ mushrooms. Chemistry 26, 729–734 (2020).

    Google Scholar 

  75. Ray, T. S. & Correction Psychedelics and the human receptorome. PLoS One. 5 https://doi.org/10.1371/annotation/e580a864-cf13-40c2-9bd9-b9687a6 (2010).

Download references

Acknowledgements

The authors acknowledge the Centre of High-Performance Computing (CHPC, www.chpc.ac.za), Cape Town, South Africa, for making computational resources available, as well as the funding provided for this research through the South African National Research Foundation (NRF) Thuthuka Programme.

Funding

This study is funded through National Research Foundation (NRF) Thuthuka programme (Grant number TTK23030380657).

Author information

Authors and Affiliations

  1. Department of Genetics, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein, 9301, South Africa

    Zurika Murray & Johannes Frederik Wentzel

  2. Department of Cardiothoracic Surgery, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein, 9301, South Africa

    Angélique Lewies

  3. Department of Chemistry, University of the Free State, 205 Nelson Mandela Avenue, Bloemfontein, 9301, South Africa

    Marietjie Schutte-Smith, Elizabeth Erasmus, Anwar Noreljaleel, Hendrik Visser, Anke Wilhelm & Abdul Rashid Issahaku

Authors
  1. Zurika Murray
    View author publications

    Search author on:PubMed Google Scholar

  2. Angélique Lewies
    View author publications

    Search author on:PubMed Google Scholar

  3. Johannes Frederik Wentzel
    View author publications

    Search author on:PubMed Google Scholar

  4. Marietjie Schutte-Smith
    View author publications

    Search author on:PubMed Google Scholar

  5. Elizabeth Erasmus
    View author publications

    Search author on:PubMed Google Scholar

  6. Anwar Noreljaleel
    View author publications

    Search author on:PubMed Google Scholar

  7. Hendrik Visser
    View author publications

    Search author on:PubMed Google Scholar

  8. Anke Wilhelm
    View author publications

    Search author on:PubMed Google Scholar

  9. Abdul Rashid Issahaku
    View author publications

    Search author on:PubMed Google Scholar

Contributions

ZM: Conceptualized and designed the study. AL, JFW, and HV: writing and editing of the manuscript. MSS and EE: data curation. AN and AW: graphics design. ARI: supervised the manuscript. All authors proofread and approved the manuscript.

Corresponding author

Correspondence to Abdul Rashid Issahaku.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, Z., Lewies, A., Wentzel, J.F. et al. Network pharmacology and molecular simulation reveal the entourage effect mechanisms of psilocybin-producing mushrooms on the brain. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39483-7

Download citation

  • Received: 30 May 2025

  • Accepted: 05 February 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39483-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Magic mushroom
  • Psilocin
  • Entourage effect
  • Network pharmacology
  • Psychedelics
  • Molecular docking
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing