Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Evaluation of molecular interactions of vaping juice components with ACE2 receptor
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Evaluation of molecular interactions of vaping juice components with ACE2 receptor

  • Samavath Mallawarachchi1,
  • Aayushi Nangia1,2,
  • Mohammad Jasim Ibrahim1,2,
  • Aadhil Haq1,
  • Sandun Fernando1 &
  • …
  • Maria D. King1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Chemical biology
  • Chemistry
  • Drug discovery

Abstract

Electronic nicotine delivery systems have recently achieved great popularity as safer alternatives to traditional tobacco. However, there is growing evidence that vaping is not harmless, with documented acute and chronic health effects. This study investigated how components of vape juice interact with human Angiotensin-converting enzyme 2 (ACE2) receptors, using molecular docking, molecular dynamics simulations, and Biolayer Interferometry (BLI). In the initial docking, menthol showed the strongest binding, followed by nicotine and capsaicin, while formaldehyde and acrolein demonstrated moderate binding to the zinc ion binding site of ACE2. Capsaicin formed the greatest number of interactions with multiple hydrogen bonds targeting the catalytic HIS374 residue. Menthol, glycerol, and propylene glycol also formed hydrogen bonds in the active site region, while nicotine formed polar interactions. In contrast, formaldehyde and acrolein, the product of glycerol and propylene glycol, did not form any significant interactions with ACE2, maybe due to their small molecule size. All vaping components formed interactions with the Zn2+ ion, suggesting potential implications on active site functionality. In the BLI experiments, nicotine demonstrated the most stable binding to ACE2, as evidenced by slow dissociation. The binding of menthol and capsaicin to ACE2 was less stable compared to nicotine, possibly due to their hydrophobic nature. These findings can pave the way for future studies exploring the vaping-related effects within a receptor-centric systems biology framework.

Data availability

All relevant data are included in the manuscript or supplementary data. Any additional information is available from authors upon request.

References

  1. Results from the Annual National Youth Tobacco Survey, (2024). https://www.fda.gov/tobacco-products/youth-and-tobacco/results-annual-national-youth-tobacco-survey

  2. Fuentes, A. L. & Crotty Alexander, L. E. in Electronic Cigarettes and Vape Devices: A Comprehensive Guide for Clinicians and Health Professionals (eds Susan Chu Walley & Karen Wilson) 53–61Springer International Publishing, (2021).

  3. Tsai, M., Byun, M. K., Shin, J. & Crotty Alexander, L. E. Effects of e-cigarettes and vaping devices on cardiac and pulmonary physiology. J. Physiol. 598, 5039–5062. https://doi.org/10.1113/JP279754 (2020).

    Google Scholar 

  4. Li, L., Lee, E. S., Nguyen, C. & Zhu, Y. Effects of propylene glycol, vegetable glycerin, and nicotine on emissions and dynamics of electronic cigarette aerosols. Aerosol Sci. Technol. 54, 1270–1281. https://doi.org/10.1080/02786826.2020.1771270 (2020).

    Google Scholar 

  5. Lee, Y. J., Na, C. J., Botao, L., Kim, K. H. & Son, Y. S. Quantitative insights into major constituents contained in or released by electronic cigarettes: propylene glycol, vegetable glycerin, and nicotine. Sci. Total Environ. 703, 134567. https://doi.org/10.1016/j.scitotenv.2019.134567 (2020).

    Google Scholar 

  6. Peace, M. R. et al. Concentration of nicotine and glycols in 27 electronic cigarette formulations. J. Anal. Toxicol. 40, 403–407. https://doi.org/10.1093/jat/bkw037 (2016).

    Google Scholar 

  7. Krüsemann, E. J. Z. et al. Comprehensive overview of common e-liquid ingredients and how they can be used to predict an e-liquid’s flavour category. Tob. Control. 30, 185–191. https://doi.org/10.1136/tobaccocontrol-2019-055447 (2021).

    Google Scholar 

  8. Journigan, V. B. & Zaveri, N. T. TRPM8 ion channel ligands for new therapeutic applications and as probes to study menthol Pharmacology. Life Sci. 92, 425–437. https://doi.org/10.1016/j.lfs.2012.10.032 (2013).

    Google Scholar 

  9. Khlystov, A. & Samburova, V. Flavoring compounds dominate toxic aldehyde production during E-Cigarette vaping. Environ. Sci. Technol. 50, 13080–13085. https://doi.org/10.1021/acs.est.6b05145 (2016).

    Google Scholar 

  10. Grana, R. A., Popova, L. & Ling, P. M. A longitudinal analysis of electronic cigarette use and smoking cessation. JAMA Intern. Med. 174, 812–813. https://doi.org/10.1001/jamainternmed.2014.187 (2014).

    Google Scholar 

  11. Goniewicz, M. L., Kuma, T., Gawron, M., Knysak, J. & Kosmider, L. Nicotine levels in electronic cigarettes. Nicotine Tob. Res. 15, 158–166. https://doi.org/10.1093/ntr/nts103 (2013).

    Google Scholar 

  12. Wells, A. C. & Lotfipour, S. Prenatal nicotine exposure during pregnancy results in adverse neurodevelopmental alterations and neurobehavioral deficits. Adv. Drug Alcohol Res. 3, 11628. https://doi.org/10.3389/adar.2023.11628 (2023).

    Google Scholar 

  13. Brody, A. L. et al. Brain nicotinic acetylcholine receptor occupancy: effect of smoking a denicotinized cigarette. Int. J. Neuropsychopharmacol. 12, 305–316. https://doi.org/10.1017/s146114570800922x (2009).

    Google Scholar 

  14. Benowitz, N. L. Nicotine addiction. N Engl. J. Med. 362, 2295–2303. https://doi.org/10.1056/NEJMra0809890 (2010).

    Google Scholar 

  15. Dani, J. A. & De Biasi, M. Cellular mechanisms of nicotine addiction. Pharmacol. Biochem. Behav. 70, 439–446. https://doi.org/10.1016/s0091-3057(01)00652-9 (2001).

    Google Scholar 

  16. Maggi, F. et al. Nicotine upregulates ACE2 expression and increases competence for SARS-CoV-2 in human pneumocytes. ERJ Open. Res. 7 https://doi.org/10.1183/23120541.00713-2020 (2021).

  17. Oakes, J. M., Fuchs, R. M., Gardner, J. D., Lazartigues, E. & Yue, X. Nicotine and the renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R895–r906. https://doi.org/10.1152/ajpregu.00099.2018 (2018).

    Google Scholar 

  18. Karashima, Y. et al. Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci. 27, 9874–9884. https://doi.org/10.1523/jneurosci.2221-07.2007 (2007).

    Google Scholar 

  19. Kichko, T. I., Neuhuber, W., Kobal, G. & Reeh, P. W. The roles of TRPV1, TRPA1 and TRPM8 channels in chemical and thermal sensitivity of the mouse oral mucosa. Eur. J. Neurosci. 47, 201–210. https://doi.org/10.1111/ejn.13799 (2018).

    Google Scholar 

  20. Hansen, E., Arendt-Nielsen, L. & Boudreau, S. A. A comparison of oral sensory effects of three TRPA1 agonists in young adult smokers and Non-smokers. Front. Physiol. 8, 663. https://doi.org/10.3389/fphys.2017.00663 (2017).

    Google Scholar 

  21. Willis, D. N., Liu, B., Ha, M. A., Jordt, S. E. & Morris, J. B. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J. 25, 4434–4444. https://doi.org/10.1096/fj.11-188383 (2011).

    Google Scholar 

  22. Munjuluri, S. et al. Capsaicin and TRPV1 channels in the cardiovascular system: the role of inflammation. Cells 11 https://doi.org/10.3390/cells11010018 (2021).

  23. Fan, L. et al. Menthol decreases oral nicotine aversion in C57BL/6 mice through a TRPM8-dependent mechanism. Tob. Control. 25, ii50–ii54. https://doi.org/10.1136/tobaccocontrol-2016-053209 (2016).

    Google Scholar 

  24. Exley, R. et al. Distinct contributions of nicotinic acetylcholine receptor subunit α4 and subunit α6 to the reinforcing effects of nicotine. Proc. Natl. Acad. Sci. 108, 7577–7582. https://doi.org/10.1073/pnas.1103000108 (2011).

    Google Scholar 

  25. Towler, P. et al. ACE2 X-Ray structures reveal a large Hinge-bending motion important for inhibitor binding and Catalysis*. J. Biol. Chem. 279, 17996–18007. https://doi.org/10.1074/jbc.M311191200 (2004).

    Google Scholar 

  26. Hernández Prada, J. A. et al. Structure-Based identification of Small-Molecule Angiotensin-Converting enzyme 2 activators as novel antihypertensive agents. Hypertension 51, 1312–1317. https://doi.org/10.1161/HYPERTENSIONAHA.107.108944 (2008).

    Google Scholar 

  27. Williams-Noonan, B. J., Todorova, N., Kulkarni, K., Aguilar, M. I. & Yarovsky, I. An active site inhibitor induces conformational penalties for ACE2 recognition by the Spike protein of SARS-CoV-2. J. Phys. Chem. B. 125, 2533–2550. https://doi.org/10.1021/acs.jpcb.0c11321 (2021).

    Google Scholar 

  28. Masuyer, G., Schwager, S. L. U., Sturrock, E. D., Isaac, R. E. & Acharya, K. R. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Sci. Rep. 2, 717. https://doi.org/10.1038/srep00717 (2012).

    Google Scholar 

  29. Bhattarai, A., Pawnikar, S. & Miao, Y. Mechanism of ligand recognition by human ACE2 receptor. J. Phys. Chem. Lett. 12, 4814–4822. https://doi.org/10.1021/acs.jpclett.1c01064 (2021).

    Google Scholar 

  30. Mohammadi, S. et al. In Silico investigation on the inhibiting role of Nicotine/Caffeine by blocking the S protein of SARS-CoV-2 versus ACE2 receptor. Microorganisms 8, 1600 (2020).

    Google Scholar 

  31. Selvaa Kumar, C., Kumar, S. A. & Wei, H. Comparative Docking studies to understand the binding affinity of nicotine with soluble ACE2 (sACE2)-SARS-CoV-2 complex over sACE2. Toxicol. Rep. 7, 1366–1372. https://doi.org/10.1016/j.toxrep.2020.10.002 (2020).

    Google Scholar 

  32. Day, C. J. et al. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2–ACE2 Receptor Interactions. mBio 12, (2021). https://doi.org/10.1128/mbio.03681-03620, https://doi.org/10.1128/mbio.03681-20.

  33. Sharma, G., Song, L. F. & Merz, K. M. Effect of an inhibitor on the ACE2-Receptor-Binding domain of SARS-CoV-2. J. Chem. Inf. Model. 62, 6574–6585. https://doi.org/10.1021/acs.jcim.1c01283 (2022).

    Google Scholar 

  34. Fiorillo, B. et al. Discovery of bile acid derivatives as potent ACE2 activators by virtual screening and essential dynamics. J. Chem. Inf. Model. 62, 196–209. https://doi.org/10.1021/acs.jcim.1c01126 (2022).

    Google Scholar 

  35. Basu, A., Sarkar, A. & Maulik, U. Molecular Docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 Spike protein and human ACE2. Sci. Rep. 10, 17699. https://doi.org/10.1038/s41598-020-74715-4 (2020).

    Google Scholar 

  36. Li, F. Structural analysis of major species barriers between humans and palm civets for severe acute respiratory syndrome coronavirus infections. J. Virol. 82, 6984–6991. https://doi.org/10.1128/jvi.00442-08 (2008).

    Google Scholar 

  37. Wang, G. et al. Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 Spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models. Cell Res. 31, 17–24. https://doi.org/10.1038/s41422-020-00450-0 (2021).

    Google Scholar 

  38. Piplani, S., Singh, P. K., Winkler, D. A. & Petrovsky, N. In Silico comparison of SARS-CoV-2 Spike protein-ACE2 binding affinities across species and implications for virus origin. Sci. Rep. 11, 13063. https://doi.org/10.1038/s41598-021-92388-5 (2021).

    Google Scholar 

  39. Cheng, F. J. et al. Hesperidin is a potential inhibitor against SARS-CoV-2 infection. Nutrients 13, 2800 (2021).

    Google Scholar 

  40. Han, L. et al. Potential mechanism prediction of Cold-Damp plague formula against COVID-19 via network Pharmacology analysis and molecular Docking. Chin. Med. 15, 78. https://doi.org/10.1186/s13020-020-00360-8 (2020).

    Google Scholar 

  41. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291. https://doi.org/10.1107/S0021889892009944 (1993).

    Google Scholar 

  42. Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99. https://doi.org/10.1016/s0022-2836(63)80023-6 (1963).

    Google Scholar 

  43. Eisenberg, D., Lüthy, R. & Bowie, J. U. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 277, 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8 (1997).

    Google Scholar 

  44. Wiederstein, M. & Sippl, M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, W407–W410. https://doi.org/10.1093/nar/gkm290 (2007).

    Google Scholar 

  45. Koivisto, A. P., Belvisi, M. G., Gaudet, R. & Szallasi A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug Discovery. 21, 41–59. https://doi.org/10.1038/s41573-021-00268-4 (2022).

    Google Scholar 

  46. Huang, J., Korsunsky, A., Yazdani, M. & Chen, J. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Front. Mol. Neurosci. 16, 1334370. https://doi.org/10.3389/fnmol.2023.1334370 (2023).

    Google Scholar 

  47. Zhang, G., Lin, R. L., Wiggers, M., Snow, D. M. & Lee, L. Y. Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat. J. Physiol. 586, 5771–5786. https://doi.org/10.1113/jphysiol.2008.161042 (2008).

    Google Scholar 

  48. Kanemitsu, Y. et al. Increased capsaicin sensitivity in patients with severe asthma is associated with worse clinical outcome. Am. J. Respir Crit. Care Med. 201, 1068–1077. https://doi.org/10.1164/rccm.201911-2263OC (2020).

    Google Scholar 

  49. Yang, F. & Zheng, J. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. 8, 169–177. https://doi.org/10.1007/s13238-016-0353-7 (2017).

    Google Scholar 

  50. Khelfaoui, H., Harkati, D. & Saleh, B. A. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J. Biomol. Struct. Dynamics. 39, 7246–7262. https://doi.org/10.1080/07391102.2020.1803967 (2021).

    Google Scholar 

  51. Duan, L., Liu, X., Zhang, J. Z. H. & Interaction Entropy A new paradigm for highly efficient and reliable computation of Protein–Ligand binding free energy. J. Am. Chem. Soc. 138, 5722–5728. https://doi.org/10.1021/jacs.6b02682 (2016).

    Google Scholar 

  52. Ekberg, V. & Ryde, U. On the use of interaction entropy and related methods to estimate binding entropies. J. Chem. Theory Comput. 17, 5379–5391. https://doi.org/10.1021/acs.jctc.1c00374 (2021).

    Google Scholar 

  53. Yazdani, M., Jafari, A., Mahdian, S., Namazi, M. & Gharaghani, S. Rational approaches to discover SARS-CoV-2/ACE2 interaction inhibitors: Pharmacophore-based virtual screening, molecular docking, molecular dynamics and binding free energy studies. J. Mol. Liq. 375, 121345. https://doi.org/10.1016/j.molliq.2023.121345 (2023).

    Google Scholar 

  54. Al-Karmalawy, A. A. et al. Molecular Docking and dynamics simulation revealed the potential inhibitory activity of aceis against SARS-CoV-2 targeting the hACE2 receptor. Front. Chem. 9, 661230. https://doi.org/10.3389/fchem.2021.661230 (2021).

    Google Scholar 

  55. Patel, C. N., Kumar, S. P., Pandya, H. A. & Rawal, R. M. Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Mol. Diversity. 25, 421–433. https://doi.org/10.1007/s11030-020-10135-w (2021).

    Google Scholar 

  56. Zhang, J. et al. Identification of fungicide combinations for overcoming Plasmopara viticola and botrytis cinerea fungicide resistance. Microorganisms 11, 2966 (2023).

    Google Scholar 

  57. Alzain, A. A. et al. Integrating computational methods guided the discovery of phytochemicals as potential Pin1 inhibitors for cancer: pharmacophore modeling, molecular docking, MM-GBSA calculations and molecular dynamics studies. Front. Chem. 12, 1339891. https://doi.org/10.3389/fchem.2024.1339891 (2024).

    Google Scholar 

  58. Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R. & De Gioia, L. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case. J. Mol. Graph. Model. 27, 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006 (2009).

    Google Scholar 

  59. Small Molecule Binding Kinetics.

  60. Aziz, U. B. A. et al. Targeted small molecule inhibitors blocking the cytolytic effects of Pneumolysin and homologous toxins. Nat. Commun. 15, 3537. https://doi.org/10.1038/s41467-024-47741-3 (2024).

    Google Scholar 

  61. Ramírez, D. & Caballero, J. Is it reliable to take the molecular Docking top scoring position as the best solution without considering available. Struct. Data? Molecules. 23 https://doi.org/10.3390/molecules23051038 (2018).

  62. Groneck, E. N., Peek, N., Lynch, W. E. & Padgett, C. W. Crystal structures of zinc(II) coordination complexes with isoquinoline N-oxide. Acta Crystallogr. Sect. E. 81, 132–139. https://doi.org/10.1107/S2056989025000180 (2025).

    Google Scholar 

  63. Protano, C. et al. The carcinogenic effects of formaldehyde occupational exposure: A systematic review. Cancers (Basel). 14. https://doi.org/10.3390/cancers14010165 (2021).

  64. Wang, H. T. et al. Effect of carcinogenic acrolein on DNA repair and mutagenic susceptibility. J. Biol. Chem. 287, 12379–12386. https://doi.org/10.1074/jbc.M111.329623 (2012).

    Google Scholar 

  65. Kumar, V., Liu, H. & Wu, C. Drug repurposing against SARS-CoV-2 receptor binding domain using ensemble-based virtual screening and molecular dynamics simulations. Comput. Biol. Med. 135, 104634. https://doi.org/10.1016/j.compbiomed.2021.104634 (2021).

    Google Scholar 

  66. Mulgaonkar, N. et al. In Silico and in vitro evaluation of Imatinib as an inhibitor for SARS-CoV-2. J. Biomol. Struct. Dynamics. 41, 3052–3061. https://doi.org/10.1080/07391102.2022.2045221 (2023).

    Google Scholar 

  67. Pang, J. et al. Multispectral methods combined with computer simulation to explore the binding mechanism of the Azo pigment allure red to hemoglobin and myoglobin. LWT 221, 117603. https://doi.org/10.1016/j.lwt.2025.117603 (2025).

    Google Scholar 

  68. De Vita, S., Chini, M. G., Bifulco, G. & Lauro, G. Insights into the ligand binding to Bromodomain-Containing protein 9 (BRD9): A guide to the selection of potential binders by computational methods. Molecules 26, 7192 (2021).

    Google Scholar 

  69. Mall, S. et al. Antihypertensive activity of phytocompounds from selected medicinal plants via Inhibition of angiotensin-converting enzyme (ACE) protein: an in-silico approach. Nat. Prod. Res. 36, 4526–4529. https://doi.org/10.1080/14786419.2021.1990917 (2022).

    Google Scholar 

  70. Patel, C. N., Goswami, D., Sivakumar, P. K. & Pandya, H. A. Repurposing of anticancer phytochemicals for identifying potential fusion inhibitor for SARS-CoV-2 using molecular Docking and molecular dynamics (MD) simulations. J. Biomol. Struct. Dynamics. 40, 7744–7761. https://doi.org/10.1080/07391102.2021.1902393 (2022).

    Google Scholar 

  71. Haq, A. et al. In Silico evaluation of potential hit molecules against multiple serotypes of dengue virus envelope glycoprotein. Molecules 30, 1268 (2025).

    Google Scholar 

  72. Obakachi, V. A., Nchiozem-Ngnitedem, V. A., Govender, K. K. & Govender, P. P. In Silico exploration of natural Xanthone derivatives as potential inhibitors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and cellular entry. J. Comput. Aided Mol. Des. 39, 7. https://doi.org/10.1007/s10822-025-00585-5 (2025).

    Google Scholar 

  73. Liu, Y. et al. Menthol-based hydrophobic deep eutectic solvents for the purification of tea peroxidase using a three-phase partition method. LWT 218, 117528. https://doi.org/10.1016/j.lwt.2025.117528 (2025).

    Google Scholar 

  74. Yenigun, O. M., Thanassi, M. & Capsaicin An uncommon exposure and unusual treatment. Clin. Pract. Cases Emerg. Med. 3, 219–221. https://doi.org/10.5811/cpcem.2019.3.41231 (2019).

    Google Scholar 

  75. Sun, Q. The hydrophobic effects: our current Understanding. Molecules 27 https://doi.org/10.3390/molecules27207009 (2022).

  76. Genheden, S., Ryde, U. & and The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10, 449–461. https://doi.org/10.1517/17460441.2015.1032936 (2015).

    Google Scholar 

  77. Chang, C. A., Chen, W. & Gilson, M. K. Ligand configurational entropy and protein binding. Proc. Natl. Acad. Sci. 104, 1534–1539, (2007). https://doi.org/10.1073/pnas.0610494104

  78. Gossen, K. R., Zhang, M., Nikolov, Z. L., Fernando, S. D. & King, M. D. Binding behavior of receptor binding domain of the SARS-CoV-2 virus and Ivermectin. Sci. Rep. 14, 2743. https://doi.org/10.1038/s41598-024-53086-0 (2024).

    Google Scholar 

  79. Wang, H. et al. Evaluation of candidatus liberibacter Asiaticus efflux pump Inhibition by antimicrobial peptides. Molecules 27, 8729 (2022).

    Google Scholar 

  80. Kenn, M. et al. Molecular dynamics identifies semi-rigid domains in the PD-1 checkpoint receptor bound to its natural ligand PD-L1. Front. Bioeng. Biotechnol. 10, 838129. https://doi.org/10.3389/fbioe.2022.838129 (2022).

    Google Scholar 

  81. Wang, J. et al. Development of radiofluorinated MLN-4760 derivatives for PET imaging of the SARS-CoV-2 entry receptor ACE2. Eur. J. Nucl. Med. Mol. Imaging. 52, 9–21. https://doi.org/10.1007/s00259-024-06831-6 (2024).

    Google Scholar 

  82. ACE2 SPR. Assay Service, https://www.reactionbiology.com/datasheet/ace2_spr_malvern/

Download references

Acknowledgements

The authors acknowledge the High-Performance Research Computing Center (HPRC) of Texas A&M University for providing computational resources.

Funding

This work was funded, in part, by the grant from the DHHS-NIH-National Institute of Allergy and Infectious Diseases (NIAID): 5R21AI169046-02; and the Hatch Program, United States Department of Agriculture, National Institute of Food and Agriculture (USDA NIFA): TEX09746.

Author information

Authors and Affiliations

  1. Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, 77843, USA

    Samavath Mallawarachchi, Aayushi Nangia, Mohammad Jasim Ibrahim, Aadhil Haq, Sandun Fernando & Maria D. King

  2. Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA

    Aayushi Nangia & Mohammad Jasim Ibrahim

Authors
  1. Samavath Mallawarachchi
    View author publications

    Search author on:PubMed Google Scholar

  2. Aayushi Nangia
    View author publications

    Search author on:PubMed Google Scholar

  3. Mohammad Jasim Ibrahim
    View author publications

    Search author on:PubMed Google Scholar

  4. Aadhil Haq
    View author publications

    Search author on:PubMed Google Scholar

  5. Sandun Fernando
    View author publications

    Search author on:PubMed Google Scholar

  6. Maria D. King
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, M.D.K. and S.F.; methodology, M.D.K, S.F., S.M. and A.H.; software, S.M., A.N. and M.J.I.; validation, S.M., A.H., S.F. and M.D.K.; formal analysis, S.M.; investigation, S.M., A.N., M.J.I. and A.H.; resources, M.D.K. and S.F.; data curation, S.M.; writing—original draft preparation, S.M. and A.N.; writing—review and editing, S.M., S.F. and M.D.K.; visualization, S.M.; supervision, M.D.K. and S.F.; project administration, M.D.K. and S.F.; funding acquisition, M.D.K. and S.F. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Maria D. King.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallawarachchi, S., Nangia, A., Ibrahim, M.J. et al. Evaluation of molecular interactions of vaping juice components with ACE2 receptor. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39533-0

Download citation

  • Received: 12 September 2025

  • Accepted: 05 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39533-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • ACE2 receptor
  • Vape juice
  • Nicotine
  • Electronic nicotine delivery
  • Computational toxicology
  • Receptor-centric analysis
  • Ligand-receptor interactions
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research