Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Comparative analysis of natural and synthetic surfactant adsorption by quartz minerals: an experimental study
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

Comparative analysis of natural and synthetic surfactant adsorption by quartz minerals: an experimental study

  • Arash Shirali1,
  • Mohammad Ebrahimi1,
  • Abdolhossein Hemmati-Sarapardeh1,2,
  • Mohammad Ranjbar3 &
  • …
  • Mahin Schaffie1 

Scientific Reports , Article number:  (2026) Cite this article

  • 453 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Environmental sciences
  • Materials science
  • Solid Earth sciences

Abstract

The efficacy of surfactant flooding for enhanced oil recovery (EOR) can be considerably diminished by the adsorption of surfactant on reservoir rocks. The primary purpose of this study is to assess the equilibrium adsorption behavior of natural (Ziziphus Spina-Christi, ZSC) and to compare with that of synthetic (Sodium Dodecyl Sulfate, SDS) surfactants onto sandstone (quartz) minerals, which has been rarely reported in the available literature. Such a systematic investigation is beneficial for selecting a proper surfactant in EOR applications. For this purpose, electrical conductivity (EC), ultraviolet–visible spectrophotometry (UV-Vis), and Fourier transform infrared (FTIR) techniques were employed to measure the adsorption of surfactant on quartz minerals. From the results of this study, it can be pointed out that the maximum adsorption of SDS and ZCS on quartz minerals is approximately 3 mg/g and 25 mg/g, respectively. The adsorption rate of both surfactants increased with increasing surfactant concentration up to the critical micelle concentration (CMC). The Langmuir, Freundlich, and Temkin isotherm models were used to predict the experimental data. Based on the experimental findings, the Langmuir isotherm provides a good fit to the experimental data, with coefficients of determination (R²) of 0.9917 for ZSC and 0.9858 for SDS.

Similar content being viewed by others

Comparison of the natural and surfactant-modified zeolites in the adsorption efficiency of sunset yellow food dye from aqueous solutions

Article Open access 28 September 2024

Experimental and theoretical investigation of zwitterionic surfactant adsorption on calcite for enhanced oil recovery

Article Open access 02 July 2025

Adsorption behavior of in-house developed CO2-philic anionic surfactants

Article Open access 18 October 2024

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Belhaj, A., Singh, N. & Sarma, H. Critical assessment of the hybrid impact of surfactants on modified salinity water flooding. SPE Can. Energy Technol. Conf. D022S007 (SPE), R001. https://doi.org/10.2118/208974-MS (2022).

    Google Scholar 

  2. Ghatee, A. & Zarrinpoor, N. Designing an oil supply chain network considering sustainable development paradigm and uncertainty. Chem. Eng. Res. Des. 184, 692–723 (2022).

    Google Scholar 

  3. Laben, A. B. et al. Experimental study on the performance of emulsions produced during ASP flooding. J. Pet. Explor. Prod. Technol. 12, 1797–1809 (2022).

    Google Scholar 

  4. Norouzpour, M. et al. Red beet plant as a novel source of natural surfactant combined with ‘Smart water’ for EOR purposes in carbonate reservoirs. J. Mol. Liq. 370, 121051 (2023).

    Google Scholar 

  5. Pal, N., Babu, K. & Mandal, A. Surface tension, dynamic light scattering and rheological studies of a new polymeric surfactant for application in enhanced oil recovery. J. Pet. Sci. Eng. 146, 591–600 (2016).

    Google Scholar 

  6. Pal, N., Kumar, N., Verma, A., Ojha, K. & Mandal, A. Performance evaluation of novel sunflower oil-Based gemini Surfactant(s) with different spacer lengths: application in enhanced oil recovery. Energy Fuels. 32, 11344–11361 (2018).

    Google Scholar 

  7. Atta, D. Y., Negash, B. M., Yekeen, N. & Habte, A. D. A state-of-the-art review on the application of natural surfactants in enhanced oil recovery. J. Mol. Liq. 321, 114888 (2021).

    Google Scholar 

  8. Hosseini, H., Apourvari, S. N. & Schaffie, M. Wettability alteration of carbonate rocks via magnetic fields application. J. Pet. Sci. Eng. 172, 280–287 (2019).

    Google Scholar 

  9. Barari, M., Lashkarbolooki, M., Abedini, R. & Hezave, A. Z. Effects of conventional and ionic liquid-based surfactants and sodium tetraborate on interfacial tension of acidic crude oil. Sci. Rep. 14, 2618 (2024).

    Google Scholar 

  10. Abhishek, R., Kumar, G. S. & Sapru, R. K. Wettability alteration in carbonate reservoirs using nanofluids. Pet. Sci. Technol. 33, 794–801 (2015).

    Google Scholar 

  11. Mandal, A. & Ojha, K. Enhanced Oil RecoveryCRC Press,. at (2023). https://www.taylorfrancis.com/books/9781003098850

  12. Bahraminejad, H., K Manshad, A., Iglauer, S. & Keshavarz, A. NEOR mechanisms and performance analysis in carbonate/sandstone rock coated microfluidic systems. Fuel 309, 122327 (2022).

    Google Scholar 

  13. Shehzad, F. et al. Polymeric surfactants and emerging alternatives used in the demulsification of produced water: A review. Polym. Rev. 58, 63–101 (2018).

    Google Scholar 

  14. Shakeel, M., Samanova, A., Pourafshary, P. & Hashmet, M. R. Experimental analysis of oil displacement by hybrid engineered water / chemical EOR approach in carbonates. J. Pet. Sci. Eng. 207, 109297 (2021).

    Google Scholar 

  15. Nafisifar, A., Khaksar Manshad, A. & Reza Shadizadeh, S. Evaluation of a new green synthesized surfactant from linseeds - chemical EOR implications from sandstone petroleum reservoirs. J. Mol. Liq. 342, 117263 (2021).

    Google Scholar 

  16. Bahraminejad, H., Manshad, A. K., Keshavarz, A. & Characterization Micellization Behavior, and performance of a novel surfactant derived from Gundelia tournefortii plant during chemical enhanced oil recovery. Energy Fuels. 35, 1259–1272 (2021).

    Google Scholar 

  17. Khayati, H., Moslemizadeh, A., Shahbazi, K., Moraveji, M. K. & Riazi, S. H. An experimental investigation on the use of saponin as a non-ionic surfactant for chemical enhanced oil recovery (EOR) in sandstone and carbonate oil reservoirs: IFT, wettability alteration, and oil recovery. Chem. Eng. Res. Des. 160, 417–425 (2020).

    Google Scholar 

  18. Manshad, A. K., Ali, J. A., Haghighi, O. M., Sajadi, M., Keshavarz, A. & S. & Oil recovery aspects of ZnO/SiO2 nano-clay in carbonate reservoir. Fuel 307, 121927 (2022).

    Google Scholar 

  19. Aghamohammadi, N., Schaffie, M., Ranjbar, M. & Zabihi, R. Investigating the impact of Bacillus subtilis bioproducts on static adsorption of asphaltene on dolomite and calcite. Fuel 397, 135240 (2025).

    Google Scholar 

  20. Ebrahimi, M., Ghalenavi, H., Schaffie, M., Ranjbar, M. & Hemmati-Sarapardeh, A. Toward mechanistic Understanding of wettability alteration in carbonate rocks in the presence of nanoparticles, gelatin biopolymer, and core-shell nanocomposite of Fe3O4@gelatin. Sci. Rep. 14, 31679 (2024).

    Google Scholar 

  21. Ghalenavi, H., Hemmati-Sarapardeh, A., Schaffie, M. & Norouzi-Apourvari, S. Application of synthesized Fe3O4@Gelatin nanoparticles on interfacial properties and enhanced oil recovery. Sci. Rep. 15, 2558 (2025).

    Google Scholar 

  22. Hirasaki, G. J., Miller, C. A. & Puerto, M. Recent advances in surfactant EOR. SPE J. 16, 889–907 (2011).

    Google Scholar 

  23. Hosseini, H. et al. Static adsorption and interfacial tension of sodium Dodecyl sulfate via magnetic field application. J. Pet. Sci. Eng. 178, 205–215 (2019).

    Google Scholar 

  24. Nowrouzi, I., Manshad, A. K. & Mohammadi, A. H. Evaluation of interfacial tension (IFT), oil swelling and oil production under imbibition of carbonated water in carbonate oil reservoirs. J. Mol. Liq. 312, 113455 (2020).

    Google Scholar 

  25. Kamkar, A., Hosseini, H., Norouzi-Apourvari, S. & Schaffie, M. Insight into the synergic effect of ultrasonic Waves, SDS Surfactant, and silica nanoparticles on wettability alteration of carbonate rocks. Arab. J. Sci. Eng. 47, 11609–11622 (2022).

    Google Scholar 

  26. Riswati, S. S. et al. Surfactant technology for improved hydrocarbon recovery in unconventional liquid reservoirs: a systematic literature review. IOP Conf. Ser. Earth Environ. Sci. 1239, 012039 (2023).

    Google Scholar 

  27. Abbas, A. H., Alsaheb, A., Abdullah, J. K. & R. A. & Comparative study of natural chemical for enhanced oil recovery: focus on extraction and adsorption at quartz sand surface. Petroleum 9, 83–93 (2023).

    Google Scholar 

  28. Nieto-Alvarez, D. A. et al. Static and dynamic adsorption of supramolecular surfactant for oil recovery in high temperature and salinity conditions. J. Surfactants Deterg. 26, 817–826 (2023).

    Google Scholar 

  29. Holmberg, K. Natural surfactants. Curr. Opin. Colloid Interface Sci. 6, 148–159 (2001).

    Google Scholar 

  30. Daghlian Sofla, S. J., Sharifi, M. & Hemmati Sarapardeh, A. Toward mechanistic Understanding of natural surfactant flooding in enhanced oil recovery processes: the role of salinity, surfactant concentration and rock type. J. Mol. Liq. 222, 632–639 (2016).

    Google Scholar 

  31. Rodríguez-Cruz, M. S., Sanchez-Martin, M. J. & Sanchez-Camazano, M. A comparative study of adsorption of an anionic and a non-ionic surfactant by soils based on physicochemical and mineralogical properties of soils. Chemosphere 61, 56–64 (2005).

    Google Scholar 

  32. Sánchez-Martín, M. J., Dorado, M. C., del Hoyo, C. & Rodríguez-Cruz, M. S. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. J. Hazard. Mater. 150, 115–123 (2008).

    Google Scholar 

  33. Zhu, L. & Feng, S. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic–nonionic surfactants. Chemosphere 53, 459–467 (2003).

    Google Scholar 

  34. Wu, Y. et al. Reducing surfactant adsorption on rock by silica nanoparticles for enhanced oil recovery. J. Pet. Sci. Eng. 153, 283–287 (2017).

    Google Scholar 

  35. Herawati, I., Permadi, P., Rochliadi, A. & Marhaendrajana, T. Adsorption of anionic surfactant on sandstone reservoir containing clay minerals and its effect on wettability alteration. Energy Rep. 8, 11554–11568 (2022).

    Google Scholar 

  36. Belhaj, A. F. et al. Static adsorption evaluation for anionic-nonionic surfactant mixture on sandstone in the presence of crude oil at high reservoir temperature condition. SPE Reserv. Eval Eng. 25, 261–272 (2022).

    Google Scholar 

  37. Belhaj, A. F. & R044 (SPE. Surfactant Partitioning and Adsorption in Chemical EOR: The Neglected Phenomenon in Porous Media. in SPE/IATMI Asia Pacific Oil Gas Conf. Exhib. D012S032, at (2021). https://onepetro.org/SPEAPOG/proceedings/21APOG/21APOG/D012S032R044/470086

  38. Belhaj, A. F. et al. Experimental investigation, binary modelling and artificial neural network prediction of surfactant adsorption for enhanced oil recovery application. Chem. Eng. J. 406, 127081 (2021).

    Google Scholar 

  39. Lebouachera, S. E. I. et al. Experimental investigations of SDS adsorption on the Algerian rock reservoir: chemical enhanced oil recovery case. Res. Chem. Intermed. 44, 7665–7690 (2018).

    Google Scholar 

  40. Ahmadi, M. A. & Shadizadeh, S. R. Experimental investigation of adsorption of a new nonionic surfactant on carbonate minerals. Fuel 104, 462–467 (2013).

    Google Scholar 

  41. Zendehboudi, S., Ahmadi, M. A., Rajabzadeh, A. R., Mahinpey, N. & Chatzis, I. Experimental study on adsorption of a new surfactant onto carbonate reservoir samples—application to EOR. Can. J. Chem. Eng. 91, 1439–1449 (2013).

    Google Scholar 

  42. Somasundaran, P. & Zhang, L. Adsorption of surfactants on minerals for wettability control in improved oil recovery processes. J. Pet. Sci. Eng. 52, 198–212 (2006).

    Google Scholar 

  43. Gbadamosi, A. O., Junin, R., Manan, M. A., Agi, A. & Yusuff, A. S. An overview of chemical enhanced oil recovery: recent advances and prospects. Int. Nano Lett. 9, 171–202 (2019).

    Google Scholar 

  44. Yekeen, N., Manan, M. A., Idris, A. K. & Samin, A. M. Influence of surfactant and electrolyte concentrations on surfactant adsorption and foaming characteristics. J. Pet. Sci. Eng. 149, 612–622 (2017).

    Google Scholar 

  45. Ma, K. et al. Adsorption of cationic and anionic surfactants on natural and synthetic carbonate materials. J. Colloid Interface Sci. 408, 164–172 (2013).

    Google Scholar 

  46. Amirianshoja, T., Junin, R., Kamal Idris, A. & Rahmani, O. A comparative study of surfactant adsorption by clay minerals. J. Pet. Sci. Eng. 101, 21–27 (2013).

    Google Scholar 

  47. Bera, A., Kumar, T., Ojha, K. & Mandal, A. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies. Appl. Surf. Sci. 284, 87–99 (2013).

    Google Scholar 

  48. Belhaj, A. F., Elraies, K. A., Shuhili, J. A., Mahmood, S. M. & Tewari, R. D. Surfactant adsorption evaluation in the presence of crude oil at high reservoir temperature condition. in Offshore Technol. Conf. Asia D011S008R001 (OTC, (2020).

  49. Belhaj, A. F. et al. Partitioning behaviour of novel surfactant mixture for high reservoir temperature and high salinity conditions. Energy 198, 117319 (2020).

    Google Scholar 

  50. Belhaj, A. F., Fakir, S. H., Javadi, A. H. & Sarma, H. K. Bridging Laboratory Insights to Field Applications: Advancing Geochemical Modelling of Hybrid Low-Salinity Surfactant Flooding in Carbonates. in SPE Annu. Tech. Conf. Exhib. D011S009R004SPE, (2025).

  51. Machale, J., Majumder, S. K., Ghosh, P., Sen, T. K. & Saeedi, A. Impact of mineralogy, salinity, and temperature on the adsorption characteristics of a novel natural surfactant for enhanced oil recovery. Chem. Eng. Commun. 209, 143–157 (2022).

    Google Scholar 

  52. Ebrahimi, M., Ghalenavi, H., Schaffie, M., Ranjbar, M. & Hemmati-Sarapardeh, A. Experimental investigation of wettability alteration in sandstone rock by nanoparticles, gelatin biopolymer, salt ions, and synthesized Fe3O4/gelatin nanocomposite for EOR applications. Sci. Rep. 15, 33260 (2025).

    Google Scholar 

  53. Pal, N., Saxena, N., Laxmi, K. V. D. & Mandal, A. Interfacial behaviour, wettability alteration and emulsification characteristics of a novel surfactant: implications for enhanced oil recovery. Chem. Eng. Sci. 187, 200–212 (2018).

    Google Scholar 

  54. Ahmadi, M. A. & Shadizadeh, S. R. Experimental investigation of a natural surfactant adsorption on shale-sandstone reservoir rocks: static and dynamic conditions. Fuel 159, 15–26 (2015).

    Google Scholar 

  55. Ahmadi, M. A., Zendehboudi, S., Shafiei, A. & James, L. Nonionic surfactant for enhanced oil recovery from carbonates: adsorption kinetics and equilibrium. Ind. Eng. Chem. Res. 51, 9894–9905 (2012).

    Google Scholar 

  56. Bozicevic, A., De Mieri, M., Di Benedetto, A., Gafner, F. & Hamburger, M. Dammarane-type saponins from leaves of Ziziphus spina-christi. Phytochemistry 138, 134–144 (2017).

    Google Scholar 

  57. Singh, D. & Chaudhuri, P. K. Structural characteristics, bioavailability and cardioprotective potential of saponins. Integr. Med. Res. 7, 33–43 (2018).

    Google Scholar 

  58. Hostettmann, K., Marston, A. & Saponins (No Title) 1 (1995).

  59. Emadi, S. et al. Effect of using zyziphus spina Christi or Cedr extract (CE) as a natural surfactant on oil mobility control by foam flooding. J. Mol. Liq. 293, 111573 (2019).

    Google Scholar 

  60. Arabloo, M., Ghazanfari, M. H. & Rashtchian, D. Wettability modification, interfacial tension and adsorption characteristics of a new surfactant: implications for enhanced oil recovery. Fuel 185, 199–210 (2016).

    Google Scholar 

  61. Summerton, E. et al. The impact of N,N-dimethyldodecylamine N-oxide (DDAO) concentration on the crystallisation of sodium Dodecyl sulfate (SDS) systems and the resulting changes to crystal structure, shape and the kinetics of crystal growth. J. Colloid Interface Sci. 527, 260–266 (2018).

    Google Scholar 

  62. Ghosh, B. & Li, X. Effect of surfactant composition on reservoir wettability and scale inhibitor squeeze lifetime in oil wet carbonate reservoir. J. Pet. Sci. Eng. 108, 250–258 (2013).

    Google Scholar 

  63. López-Díaz, D. & Velázquez, M. M. Variation of the critical micelle concentration with surfactant structure: a simple method to analyze the role of attractive–repulsive forces on micellar association. Chem. Educ. 12, 327–330 (2007).

    Google Scholar 

  64. Ezeonyeka, N. L., Hemmati-Sarapardeh, A. & Husein, M. M. Asphaltenes adsorption onto metal oxide nanoparticles: A critical evaluation of measurement techniques. Energy Fuels. 32, 2213–2223 (2018).

    Google Scholar 

  65. Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004). https://onlinelibrary.wiley.com/doi/book/10.1002/0470011149%3Eat <

  66. Stuart, B. in Kirk-Othmer Encycl. Chem. Technol.Wiley, at https://onlinelibrary.wiley.com/doi/ (2005). https://doi.org/10.1002/0471238961.0914061810151405.a01.pub2%3E

  67. Soleimani, Y., Mohammadi, M. R., Schaffie, M., Zabihi, R. & Ranjbar, M. An experimental study of the effects of bacteria on asphaltene adsorption and wettability alteration of dolomite and quartz. Sci. Rep. 13, 21497 (2023).

    Google Scholar 

  68. Zargartalebi, M., Kharrat, R. & Barati, N. Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel 143, 21–27 (2015).

    Google Scholar 

  69. Hollander, A. F., Somasundaran, P. & Gryte, C. C. in Adsorpt. from Aqueous Solut. 143–162Springer, (1981).

  70. Somasundaran, P. & Agar, G. The zero point of charge of calcite. J. Colloid Interface Sci. 24, 433–440 (1967).

    Google Scholar 

  71. Kumar, N. & Mandal, A. Wettability alteration of sandstone rock by surfactant stabilized nanoemulsion for enhanced oil recovery—A mechanistic study. Colloids Surf. Physicochem Eng. Asp. 601, 125043 (2020).

    Google Scholar 

  72. Babu, K., Pal, N., Bera, A., Saxena, V. K. & Mandal, A. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery. Appl. Surf. Sci. 353, 1126–1136 (2015).

    Google Scholar 

  73. Bera, A., Ojha, S. K., Kumar, K., Mandal, A. & T. & Mechanistic study of wettability alteration of quartz surface induced by nonionic surfactants and interaction between crude oil and quartz in the presence of sodium chloride salt. Energy Fuels. 26, 3634–3643 (2012).

    Google Scholar 

  74. KJELLIN, M. & JOHANSSON, I. A. R. D. Surfactants from Renewable Resources (Wiley, 2010). https://doi.org/10.1002/9780470686607

  75. SHAH, S. S. & KHAN, A. M. Determination of critical micelle concentration (Cmc) of sodium Dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its Cmc using ORIGIN software. J. Chem. Soc. Pakistan. 30, 186 (2011).

    Google Scholar 

  76. Barati-Harooni, A., Najafi-Marghmaleki, A., Tatar, A. & Mohammadi, A. H. Experimental and modeling studies on adsorption of a nonionic surfactant on sandstone minerals in enhanced oil recovery process with surfactant flooding. J. Mol. Liq. 220, 1022–1032 (2016).

    Google Scholar 

  77. Sen Gupta, S. & Bhattacharyya, K. G. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J. Environ. Manage. 87, 46–58 (2008).

    Google Scholar 

  78. Saxena, N., Kumar, A. & Mandal, A. Adsorption analysis of natural anionic surfactant for enhanced oil recovery: the role of mineralogy, salinity, alkalinity and nanoparticles. J. Pet. Sci. Eng. 173, 1264–1283 (2019).

    Google Scholar 

  79. DİKMEN, S., ERSOY, B., DİKMEN, Z., ADSORPTION BEHAVIOUR OF IONIC AND NON-IONIC SURFACTANTS ONTO TALC & A NATURALLY HYDROPHOBIC MINERAL-A COMPARATIVE STUDY. Eskişehir Tech. Univ. J. Sci. Technol. - Appl. Sci. Eng. 21, 139–152 (2020).

    Google Scholar 

  80. Das, D., Panigrahi, S., Misra, P. K. & Nayak, A. Effect of organized Assemblies. Part 4. Formulation of highly concentrated Coal–Water slurry using a natural surfactant. Energy Fuels. 22, 1865–1872 (2008).

    Google Scholar 

  81. Zhang, L., Somasundaran, P., Mielczarski, J. & Mielczarski, E. Adsorption mechanism of n-dodecyl-β-D-maltoside on alumina. J. Colloid Interface Sci. 256, 16–22 (2002).

    Google Scholar 

  82. James, R. O. & Healy, T. W. Adsorption of hydrolyzable metal ions at the oxide—water interface. III. A thermodynamic model of adsorption. J. Colloid Interface Sci. 40, 65–81 (1972).

    Google Scholar 

  83. Yusuf, M., Wathon, M. H., Thanasaksukthawee, V., Saul, A. & Tangparitkul, S. Adsorption of saponin natural surfactant on carbonate rock and comparison to synthetic surfactants: an enhanced oil recovery prospective. Energy Fuels. 35, 11193–11202 (2021).

    Google Scholar 

  84. Dauyltayeva, A. et al. Screening of chemicals to enhance oil recovery in a mature sandstone oilfield in kazakhstan: overcoming challenges of high residual oil. Appl. Sci. 13, 10307 (2023).

    Google Scholar 

  85. Zulkifli, N. N. et al. Evaluation of new surfactants for enhanced oil recovery applications in high-temperature reservoirs. J. Pet. Explor. Prod. Technol. 10, 283–296 (2020).

    Google Scholar 

  86. Belhaj, A. F. et al. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. J. Pet. Explor. Prod. Technol. 10, 125–137 (2020).

    Google Scholar 

  87. Zhang, L. et al. Static adsorption of a switchable Diamine surfactant on natural and synthetic minerals for high-salinity carbonate reservoirs. Colloids Surf. Physicochem Eng. Asp. 583, 123910 (2019).

    Google Scholar 

  88. Bashir, A., Haddad, A. S. & Rafati, R. A review of fluid displacement mechanisms in surfactant-based chemical enhanced oil recovery processes: analyses of key influencing factors. Pet. Sci. 19, 1211–1235 (2022).

    Google Scholar 

  89. Abo Gabal, R., Osama, S., Hanafy, N. & Oraby, A. Micellization thermodynamics as a function of the temperature of a cationic zwitterionic Dodecyl phosphocholine and anionic sodium Dodecyl sulfate mixed micelles with fluorometry. Appl. Phys. A. 129, 201 (2023).

    Google Scholar 

  90. Paria, S. & Khilar, K. C. A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv. Colloid Interface Sci. 110, 75–95 (2004).

    Google Scholar 

  91. Hashem, A., Al-Anwar, A., Nagy, N. M., Hussein, D. M. & Eisa, S. Isotherms and kinetic studies on adsorption of Hg(II) ions onto Ziziphus spina-christi L. from aqueous solutions. Green. Process. Synth. 5, 213–224 (2016).

    Google Scholar 

  92. Yekeen, N. et al. Impact of nanoparticles–surfactant solutions on carbon dioxide and methane wettabilities of organic-rich shale and CO2/brine interfacial tension: implication for carbon geosequestration. Energy Rep. 8, 15669–15685 (2022).

    Google Scholar 

  93. Zhuravlev, L. T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. Physicochem Eng. Asp. 173, 1–38 (2000).

    Google Scholar 

  94. Kalam, S., Abu-Khamsin, S. A., Kamal, M. S. & Patil, S. Surfactant adsorption isotherms: A review. ACS Omega. 6, 32342–32348 (2021).

    Google Scholar 

  95. Liu, Z., Zhao, G., Brewer, M., Lv, Q. & Sudhölter, E. J. R. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery. Adv. Colloid Interface Sci. 294, 102467 (2021).

    Google Scholar 

  96. Langmuir, I. & THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS MICA AND PLATINUM. J. Am. Chem. Soc. 40, 1361–1403 (1918).

    Google Scholar 

  97. Foo, K. Y. & Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010).

    Google Scholar 

  98. Ruthven, D. M. Principles of Adsorption and Adsorption Processes (Wiley, 1984).

  99. Inam, E., Etim, U. J., Akpabio, E. G. & Umoren, S. A. Process optimization for the application of carbon from plantain peels in dye abstraction. J. Taibah Univ. Sci. 11, 173–185 (2017).

    Google Scholar 

Download references

Funding

No financial support was received by the authors in this research.

Author information

Authors and Affiliations

  1. Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

    Arash Shirali, Mohammad Ebrahimi, Abdolhossein Hemmati-Sarapardeh & Mahin Schaffie

  2. Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing, 163318, China

    Abdolhossein Hemmati-Sarapardeh

  3. Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman, Iran

    Mohammad Ranjbar

Authors
  1. Arash Shirali
    View author publications

    Search author on:PubMed Google Scholar

  2. Mohammad Ebrahimi
    View author publications

    Search author on:PubMed Google Scholar

  3. Abdolhossein Hemmati-Sarapardeh
    View author publications

    Search author on:PubMed Google Scholar

  4. Mohammad Ranjbar
    View author publications

    Search author on:PubMed Google Scholar

  5. Mahin Schaffie
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Arash Shirali: Investigation, Data curation, Writing original draft, Mohammad Ebrahimi: Investigation, Methodology, Writing original draft, Abdolhossein Hemmati-Sarapardeh: Supervision, Conceptualization, Validation, Visualization, Mohammad Ranjbar: Validation, Visualization, Writing-Review & Editing, Mahin Schaffie: Validation, Methodology, Writing Review & Editing.

Corresponding authors

Correspondence to Mohammad Ebrahimi, Abdolhossein Hemmati-Sarapardeh or Mahin Schaffie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirali, A., Ebrahimi, M., Hemmati-Sarapardeh, A. et al. Comparative analysis of natural and synthetic surfactant adsorption by quartz minerals: an experimental study. Sci Rep (2026). https://doi.org/10.1038/s41598-026-39608-y

Download citation

  • Received: 12 October 2025

  • Accepted: 06 February 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-39608-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Adsorption
  • Natural surfactant
  • SDS
  • CMC
  • Quartz minerals
  • Adsorption isotherm models
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing