Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
CDX2 expression dynamics in tumor clusters: a morpho-molecular biomarker in rectal cancer pretreatment biopsies revealed by sequential immunofluorescence
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

CDX2 expression dynamics in tumor clusters: a morpho-molecular biomarker in rectal cancer pretreatment biopsies revealed by sequential immunofluorescence

  • Mauro Gwerder1,2 na1,
  • Cansaran Saygili Demir1,3 na1,
  • Hannah L. Williams1,
  • Alessandro Lugli1,
  • Cristina Graham Martinez1,
  • Joanna Kowal3,
  • Amjad Khan1,
  • Philipp Kirchner1,
  • Thibaud Koessler4,
  • Martin D. Berger5,
  • Martin Weigert6,7,8 &
  • …
  • Inti Zlobec1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biomarkers
  • Cancer
  • Computational biology and bioinformatics
  • Oncology

Abstract

In rectal cancer, there is a need for improved pretreatment biomarkers applicable to biopsies. Tumor budding (TB) is a histological feature used in colon cancer and, due to its link to epithelial-mesenchymal transition (EMT), is hypothesized to be a potential marker for therapy resistance. As EMT-related processes are also seen in other morphological features beyond TB, we investigated epithelial marker downregulation in tumor tissue, as well as morphological features such as tumor cluster size and finger-like projections. We therefore leveraged five colon cancer images to establish a hyperplex immunofluorescence workflow and a validation cohort consisting of rectal cancer pre-treatment biopsies. We built a custom image analysis pipeline to detect and segment tumor buds and other morphological features and correlated them with molecular expression intensities. We found correlations of epithelial marker downregulation and morphological transition states, both at the invasion front and at the tumor center. We furthermore observed a link between morpho-molecular transitions of nuclear CDX2 expression and tumor cluster size, which in turn informs a novel biomarker. Finally, quantification of these CDX2-based morpho-molecular transition states in rectal biopsies showed that downregulation of CDX2 expression in relation to tumor cluster size is associated with worse disease-free survival.

Data availability

Five whole slide images from the colon cancer establishment cohort will be made available upon publication of the paper in the corresponding Zenodo community: https://zenodo.org/communities/morpho-molecularcdx2

Code availability

All code used in this study is accessible on github: https://github.com/digitalpathologybern/MxIF-pipeline.

References

  1. Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I. & Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74(3), 229–263 (2024). https://doi.org/10.3322/caac.21834. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21834. Accessed 05 Aug 2024.

  2. Tamas, K. et al. Rectal and colon cancer: Not just a different anatomic site. Cancer Treat. Rev. 41(8), 671–679. https://doi.org/10.1016/j.ctrv.2015.06.007. Accessed 05 Aug 2024 (2015).

  3. Conroy, T. et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 22(5), 702–715 (2021). https://doi.org/10.1016/S1470-2045(21)00079-6 Accessed 31 Aug 2024.

  4. Bahadoer, R.R. et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. Lancet Oncol. 22(1), 29–42 (2021) https://doi.org/10.1016/S1470-2045(20)30555-6 Accessed 31 Aug 2024.

  5. Garcia-Aguilar, J. et al. Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy. J. Clin. Oncol. 40(23), 2546–2556. https://doi.org/10.1200/JCO.22.00032. Accessed 05 Aug 2024 (2022).

  6. Kapiteijn, E. et al. Total mesorectal excision (TME) with or without preoperative radiotherapy in the treatment of primary rectal cancer. Prospective randomised trial with standard operative and histopathological techniques. Dutch ColoRectal Cancer Group. Eur. J. Surg. Acta Chir. 165(5), 410–420. https://doi.org/10.1080/110241599750006613 (1999).

  7. Fokas, E. et al. International consensus recommendations on key outcome measures for organ preservation after (chemo)radiotherapy in patients with rectal cancer. Nat. Rev. Clin. Oncol. 18(12), 805–816. https://doi.org/10.1038/s41571-021-00538-5 (publisher: Nature Publishing Group). Accessed 10 Jul 2024 (2021).

  8. Habr-Gama, A. et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: Long-term results. Ann. Surg. 240(4), 711–717717718. https://doi.org/10.1097/01.sla.0000141194.27992.32 (2004).

    Google Scholar 

  9. Benson, A.B. et al. Rectal cancer, version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Comprehens. Cancer Netw. JNCCN 20(10), 1139–1167. https://doi.org/10.6004/jnccn.2022.0051 (2022) .

  10. Becker, K. et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 98(7), 1521–1530. https://doi.org/10.1002/cncr.11660. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cncr.11660 (2003). Accessed 16 Nov 2023.

  11. Dworak, O., Keilholz, L. & Hoffmann, A. Pathological Features of Rectal Cancer After Preoperative Radiochemotherapy. Vol. 5 (1997).

  12. Mandard, A.-M. et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathol. Correlat. Cancer 73(11), 2680–2686. https://doi.org/10.1002/1097-0142(19940601)73:11<2680::AID-CNCR2820731105>3.0.CO;2-C. _eprint:https://onlinelibrary.wiley.com/doi/pdf/10.1002/1097-0142%2819940601%2973%3A11%3C2680%3A%3AAID-CNCR2820731105%3E3.0.CO%3B2-C (1994). Accessed 20 June 2024.

  13. Amin, M.B. et al.. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more personalized approach to cancer staging. CA Cancer J. Clin. 67(2), 93–99. https://doi.org/10.3322/caac.21388. _eprint:https://onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21388 (2017) . Accessed 26 June 2024.

  14. Graham Mart­nez, C., Barella, Y., Kusztrk, S., Ansems, M., Gorris, M.A.J., Vliet, S., Marijnen, C.A.M. & Nagtegaal, I.D. The immune microenvironment landscape shows treatment-specific differences in rectal cancer patients. Front. Immunol. 13. https://doi.org/10.3389/fimmu.2022.1011498 (2022) (publisher: Frontiers). Accessed 23 June 2024.

  15. Kus Ozturk, S. et al. Relevance of shrinkage versus fragmented response patterns in rectal cancer. Histopathology 83(6), 870–879. https://doi.org/10.1111/his.15027 (2023) . Accessed 23 June 2024.

  16. Sano, S. et al. Intratumoral budding and CD8-positive T-cell density in pretreatment biopsies as a predictor of response to neoadjuvant chemoradiotherapy in advanced rectal cancer. Clin. Colorect. Cancer 22(4), 411–4201. https://doi.org/10.1016/j.clcc.2023.07.004 (2023).

    Google Scholar 

  17. Lugli, A. et al. Intratumoral budding as a potential parameter of tumor progression in mismatch repair-proficient and mismatch repair-deficient colorectal cancer patients. Hum. Pathol. 42(12), 1833–1840. https://doi.org/10.1016/j.humpath.2011.02.010 (2011).

    Google Scholar 

  18. Hase, K., Shatney, C., Johnson, D., Trollope, M. & Vierra, M. Prognostic value of tumor “budding’’ in patients with colorectal cancer. Dis. Colon Rectum 36(7), 627–635. https://doi.org/10.1007/BF02238588 (1993).

    Google Scholar 

  19. Lugli, A. et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 30(9), 1299–1311. https://doi.org/10.1038/modpathol.2017.46 (publisher: Nature Publishing Group). Accessed 20 June 2024 (2017).

  20. Petrelli, F. et al. Total neoadjuvant therapy in rectal cancer: A systematic review and meta-analysis of treatment outcomes. Ann. Surg. 271(3), 440–448. https://doi.org/10.1097/SLA.0000000000003471. Accessed 25 Mar 2022 (2020).

  21. Wilkinson, N. Management of rectal cancer. Surg. Clin. N. Am. 100(3), 615–628. https://doi.org/10.1016/j.suc.2020.02.014. Accessed 22 June 2024 (2020).

  22. Giger, O. T., Comtesse, S. C. M., Lugli, A., Zlobec, I. & Kurrer, M. O. Intra-tumoral budding in preoperative biopsy specimens predicts lymph node and distant metastasis in patients with colorectal cancer. Mod. Pathol. 25(7), 1048–1053. https://doi.org/10.1038/modpathol.2012.56 (publisher: Elsevier). Accessed 26 June 2024 (2012).

  23. Rogers, A. C. et al. Prognostic significance of tumor budding in rectal cancer biopsies before neoadjuvant therapy. Mod. Pathol. 27(1), 156–162. https://doi.org/10.1038/modpathol.2013.124. Accessed 10 Jul 2024 (2014).

  24. Zlobec, I. et al. Intratumoural budding (ITB) in preoperative biopsies predicts the presence of lymph node and distant metastases in colon and rectal cancer patients. Br. J. Cancer 110(4), 1008–1013. https://doi.org/10.1038/bjc.2013.797 (2014).

    Google Scholar 

  25. Dawson, H. & Lugli, A. Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front. Med. 2, 11. https://doi.org/10.3389/fmed.2015.00011 (2015) . Accessed 11 Oct 2021.

  26. Zlobec, I. & Lugli, A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: Tumor budding as oncotarget. Oncotarget 1(7), 651–661 (2010). Accessed 03 Apr 2022.

  27. Grigore, A. D., Jolly, M. K., Jia, D., Farach-Carson, M. C. & Levine, H. Tumor budding: The name is EMT. Partial EMT. J. Clin. Med. 5(5), 51. https://doi.org/10.3390/jcm5050051. Accessed 13 Nov 2022 (2016).

  28. Yu, J. et al. CDX2 inhibits epithelialmesenchymal transition in colorectal cancer by modulation of Snail expression and -catenin stabilisation via transactivation of PTEN expression. Br. J. Cancer 124(1), 270–280. https://doi.org/10.1038/s41416-020-01148-1 (publisher: Nature Publishing Group). Accessed 01 Apr 2022 (2021).

  29. Meyer, S.N., Galvn, J.A., Zahnd, S., Sokol, L., Dawson, H., Lugli, A. & Zlobec, I. Co-expression of cytokeratin and vimentin in colorectal cancer highlights a subset of tumor buds and an atypical cancer-associated stroma. Hum. Pathol. 87, 18–27. https://doi.org/10.1016/j.humpath.2019.02.002 (2019) . Accessed 06 Sep 2021.

  30. Lindner, P. et al. EMT transcription factor ZEB1 alters the epigenetic landscape of colorectal cancer cells. Cell Death Dis. 11(2), 1–13. https://doi.org/10.1038/s41419-020-2340-4 (publisher: Nature Publishing Group). Accessed 19 June 2024 (2020).

  31. Brabletz, T. et al. Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179(1–2), 56–65. https://doi.org/10.1159/000084509 (2005).

    Google Scholar 

  32. Fontana, R., Mestre-Farrera, A. & Yang, J. Update on epithelial-mesenchymal plasticity in cancer progression. Annu. Rev. Pathol. Mech. Dis. 19, 133–156. 10.1146/annurev-pathmechdis-051222-122423 (2024) (publisher: Annual Reviews). Accessed 20 Mar 2024.

  33. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14(10), 611–629. https://doi.org/10.1038/nrclinonc.2017.44 (publisher: Nature Publishing Group). Accessed 20 Mar 2024 (2017).

  34. Ueno, H. et al. New criteria for histologic Grading of Colorectal Cancer. Am. J. Surg. Pathol. 36(2), 193. https://doi.org/10.1097/PAS.0b013e318235edee. Accessed 21 June 2024 (2012).

  35. Koelzer, V.H. & Lugli, A. The tumor border configuration of colorectal cancer as a histomorphological prognostic indicator. Front. Oncol. 4, 29. https://doi.org/10.3389/fonc.2014.00029 (2014) . Accessed 20 June 2024.

  36. Lin, J.-R. et al. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 186(2), 363–38119. https://doi.org/10.1016/j.cell.2022.12.028 (publisher: Elsevier). Accessed 21 Sep 2023 (2023).

  37. Friedl, P., Locker, J., Sahai, E. & Segall, J. E. Classifying collective cancer cell invasion. Nat. Cell Biol. 14(8), 777–783. https://doi.org/10.1038/ncb2548 (publisher: Nature Publishing Group). Accessed 01 Sep 2023 (2012).

  38. Harms, P. W. et al. Multiplex immunohistochemistry and immunofluorescence: A practical update for pathologists. Mod. Pathol. 36(7), 100197. https://doi.org/10.1016/j.modpat.2023.100197. Accessed 23 June 2024 (2023).

  39. Tan, W. C. C. et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun. 40(4), 135–153. https://doi.org/10.1002/cac2.12023. Accessed 26 Dec 2021 (2020).

  40. Rivest, F. et al. Fully automated sequential immunofluorescence (seqIF) for hyperplex spatial proteomics. Sci. Rep. 13(1), 16994. https://doi.org/10.1038/s41598-023-43435-w (publisher: Nature Publishing Group3). Accessed 02 June 2024 (2023).

  41. Brieu, N. et al. Automated tumour budding quantification by machine learning augments TNM staging in muscle-invasive bladder cancer prognosis. Sci. Rep. 9(1), 5174. https://doi.org/10.1038/s41598-019-41595-2 (publisher: Nature Publishing Group). Accessed 04 Apr 2022 (2019).

  42. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16(9), 582–598. https://doi.org/10.1038/nrc.2016.73 (publisher: Nature Publishing Group). Accessed 15 June 2023 (2016).

  43. Gurzu, S. et al. Systematic review of the old and new concepts in the epithelial-mesenchymal transition of colorectal cancer. World J. Gastroenterol. 22(30), 6764–6775. https://doi.org/10.3748/wjg.v22.i30.6764 (publisher: Baishideng Publishing Group Inc.). Accessed 18 June 2024 (2016).

  44. Gheldof, A. & Berx, G. Chapter Fourteen - Cadherins and epithelial-to-mesenchymal transition. In Progress in Molecular Biology and Translational Science. The Molecular Biology of Cadherins (Roy, F. Ed.). Vol. 116. 317–336. https://doi.org/10.1016/B978-0-12-394311-8.00014-5. https://www.sciencedirect.com/science/article/pii/B9780123943118000145 (Academic Press, 2013). Accessed 19 June 2024.

  45. Graule, J. et al.. CDX2 in colorectal cancer is an independent prognostic factor and regulated by promoter methylation and histone deacetylation in tumors of the serrated pathway. Clin. Epigenet. 10(1), 120. https://doi.org/10.1186/s13148-018-0548-2 (2018) . Accessed 19 June 2024.

  46. Druzhkova, I. et al. E-cadherin in colorectal cancer: Relation to chemosensitivity. Clin. Colorect. Cancer 18(1), 74–86. https://doi.org/10.1016/j.clcc.2018.10.003. Accessed 18 June 2024 (2019).

  47. Conacci-Sorrell, M. et al. Autoregulation of E-cadherin expression by cadherin cadherin interactions: The roles of -catenin signaling, Slug, and MAPK. J. Cell Biol. 163(4), 847–857. https://doi.org/10.1083/jcb.200308162. Accessed 19 June 2024 (2003).

  48. Hayat, S. M. G. et al. CD47: Role in the immune system and application to cancer therapy. Cell. Oncol. (Dordrecht) 43(1), 19–30. https://doi.org/10.1007/s13402-019-00469-5 (2020).

    Google Scholar 

  49. Brown, T. C., Sankpal, N. V. & Gillanders, W. E. Functional implications of the dynamic regulation of EpCAM during epithelial-to-mesenchymal transition. Biomolecules 11(7), 956. https://doi.org/10.3390/biom11070956. Accessed 04 Jul 2022 (2021).

  50. Boesch, M., Spizzo, G. & Seeber, A. Concise review: Aggressive colorectal cancer: Role of epithelial cell adhesion molecule in cancer stem cells and epithelial to mesenchymal transition. Stem Cells Transl. Med. 7(6), 495–501. https://doi.org/10.1002/sctm.17-0289. Accessed 19 June 2024 (2018).

  51. Gosens, M.J.E.M., Kempen, L.C.L., Velde, C.J.H., Krieken, J.H.J.M. & Nagtegaal, I.D. Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod. Pathol. 20(2), 221–232. https://doi.org/10.1038/modpathol.3800733 (2007).

  52. Jia, Y. et al. Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET. J. Exp. Med. 216(6), 1377–1395. https://doi.org/10.1084/jem.20181394 (2019).

    Google Scholar 

  53. Evangelisti, C. et al. The wide and growing range of lamin B-related diseases: From laminopathies to cancer. Cell. Mol. Life Sci. 79(2), 126. https://doi.org/10.1007/s00018-021-04084-2. Accessed 19 June 2024 (2022).

  54. Jung, A. et al. The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear -catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am. J. Pathol. 159(5), 1613–1617. https://doi.org/10.1016/S0002-9440(10)63007-6. Accessed 19 June 2024 (2001).

  55. Rubio, C.A. Arrest of cell proliferation in budding tumor cells ahead of the invading edge of colonic carcinomas. A preliminary report. Anticancer Res. 28(4C), 2417–2420 (2008) (publisher: International Institute of Anticancer Research Section: Clinical Studies). Accessed 19 June 2024.

  56. Eskandari, E. & Eaves, C. J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J. Cell Biol. 221(6), 202201159. https://doi.org/10.1083/jcb.202201159. Accessed 21 Jul 2024 (2022).

  57. Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 7(1), 16878. https://doi.org/10.1038/s41598-017-17204-5 (2017).

    Google Scholar 

  58. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. arXiv:1806.03535 [cs]. Vol. 11071. 265–273. https://doi.org/10.1007/978-3-030-00934-2_30 (2018) . Accessed 03 Sep 2021.

  59. Weigert, M. et al. Content-aware image restoration: Pushing the limits of fluorescence microscopy. Nat. Methods 15(12), 1090–1097. https://doi.org/10.1038/s41592-018-0216-7 (2018) . Accessed 02 June 2025.

  60. Virshup, I., Rybakov, S., Theis, F.J., Angerer, P. & Wolf, F.A. anndata: Annotated data. bioRxiv. 2021.12.16.473007 (Section: New Results). https://doi.org/10.1101/2021.12.16.473007. https://www.biorxiv.org/content/10.1101/2021.12.16.473007v1 (2021). Accessed 20 June 2024.

  61. Virshup, I. et al. The scverse project provides a computational ecosystem for single-cell omics data analysis. Nat. Biotechnol. 41(5), 604–606. https://doi.org/10.1038/s41587-023-01733-8 (publisher: Nature Publishing Group). Accessed 20 June 2024 (2023).

  62. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 19(1), 15. https://doi.org/10.1186/s13059-017-1382-0. Accessed 29 Dec 2022 (2018).

  63. Nirmal, A.J. & Sorger, P.K. SCIMAP: A Python Toolkit for Integrated Spatial Analysis of Multiplexed Imaging Data. arXiv. arXiv:2405.02076 [q-bio] (2024). Accessed 20 June 2024.

  64. Breiman, L. Random Forests. Machine Learning 45(1), 5–32. https://doi.org/10.1023/A:1010933404324. Accessed 10 Oct 2022 (2001).

  65. Lin, D., Dai, J., Jia, J., He, K. & Sun, J. ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation. 3159–3167 (2016).

  66. Walt, S.v.d., Schnberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E. & Yu, T. scikit-image: Image processing in Python. PeerJ 2, 453. https://doi.org/10.7717/peerj.453 (2014) (publisher: PeerJ Inc.). Accessed 20 June 2024.

  67. Virtanen, P. et al.. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2 (2020) (Publisher: Nature Publishing Group). Accessed 20 June 2024.

  68. Traag, V. A., Waltman, L. & Eck, N. J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 9(1), 5233. https://doi.org/10.1038/s41598-019-41695-z (publisher: Nature Publishing Group). Accessed 07 Dec 2022 (2019).

  69. Navikas, V. et al. Semi-automated approaches for interrogating spatial heterogeneity of tissue samples. Sci. Rep. 14(1), 5025. https://doi.org/10.1038/s41598-024-55387-w (publisher: Nature Publishing Group). Accessed 23 June 2024 (2024).

  70. Nearchou, I. P. et al. Automated analysis of lymphocytic infiltration, tumor budding, and their spatial relationship improves prognostic accuracy in colorectal cancer. Cancer Immunol. Res. 7(4), 609–620. https://doi.org/10.1158/2326-6066.CIR-18-0377 (2019).

    Google Scholar 

  71. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1), 118–127. https://doi.org/10.1093/biostatistics/kxj037. Accessed 23 June 2024 (2007).

  72. Byers, L. A. et al. An epithelial-mesenchymal transition (EMT) gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 19(1), 279–290. https://doi.org/10.1158/1078-0432.CCR-12-1558. Accessed 01 Aug 2024 (2013).

  73. Malagoli Tagliazucchi, G., Wiecek, A. J., Withnell, E. & Secrier, M. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat. Commun. 14(1), 789. https://doi.org/10.1038/s41467-023-36439-7 (publisher: Nature Publishing Group). Accessed 01 Aug 2024 (2023).

  74. Haddad, T.S. et al. Pseudobudding: Ruptured glands do not represent true tumor buds. J. Pathol. 261(1), 19–27. https://doi.org/10.1002/path.6146. _eprint:https://onlinelibrary.wiley.com/doi/pdf/10.1002/path.6146 (2023) . Accessed 20 June 2024.

  75. Kaplan, E.L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481. https://doi.org/10.1080/01621459.1958.10501452 (1958). Accessed 20 June 2024.

  76. Punt, C. J. A. et al. Endpoints in adjuvant treatment trials: A systematic review of the literature in colon cancer and proposed definitions for future trials. J. Natl. Cancer Inst. 99(13), 998–1003. https://doi.org/10.1093/jnci/djm024 (2007).

    Google Scholar 

  77. Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.) 34(2), 187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x. _eprint:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1972.tb00899.x.(1972). Accessed 20 June 2024.

  78. Therneau, T. A Package for Survival Analysis in R. https://CRAN.R-project.org/package=survival (2023).

  79. Kassambara, A., Kosinski, M. & Biecek, P. survminer: Drawing Survival Curves using ’ggplot2’ (2021).

  80. Sjoberg, D.D., Baillie, M., Fruechtenicht, C., Haesendonckx, S. & Treis, T. ggsurvfit: Flexible Time-to-Event Figures. https://CRAN.R-project.org/package=ggsurvfit (2023).

  81. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (Springer, 2016).

  82. Fatima, Z., Sharma, P., Youssef, B. & Krishnan, K. Medullary carcinoma of the colon: A histopathologic challenge. Cureus 13(6), 15831. https://doi.org/10.7759/cureus.15831. Accessed 23 June 2024 (2021).

  83. Jass, J.R. et al. Assessment of invasive growth pattern and lymphocytic infiltration in colorectal cancer. Histopathology 28(6), 543–548. https://doi.org/10.1046/j.1365-2559.1996.d01-467.x. _eprint:https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2559.1996.d01-467.x (1996) . Accessed 05 Aug 2024.

  84. Nagtegaal, I.D. & Glynne-Jones, R. How to measure tumour response in rectal cancer? An explanation of discrepancies and suggestions for improvement. Cancer Treat. Rev. 84, 101964. https://doi.org/10.1016/j.ctrv.2020.101964 (2020) . Accessed 27 June 2022.

  85. Prall, F. Tumour budding in colorectal carcinoma. Histopathology 50(1), 151–162. https://doi.org/10.1111/j.1365-2559.2006.02551.x (2007).

    Google Scholar 

  86. Lino-Silva, L.S., Salcedo-Hernndez, R.A. & Gamboa-Dom­nguez, A. Tumour budding in rectal cancer. A comprehensive review. Contemp. Oncol. 22(2), 61–74. https://doi.org/10.5114/wo.2018.77043 (2018) . Accessed 20 Mar 2024.

  87. Lugli, A., Zlobec, I., Berger, M. D., Kirsch, R. & Nagtegaal, I. D. Tumour budding in solid cancers. Nat. Rev. Clin. Oncol. 18(2), 101–115. https://doi.org/10.1038/s41571-020-0422-y. (Nature Publishing Group). Accessed 21 June 2024 (2021).

  88. Yamada, N. et al. Tumor budding at the invasive front of colorectal cancer may not be associated with the epithelial-mesenchymal transition. Hum. Pathol. 60, 151–159. https://doi.org/10.1016/j.humpath.2016.10.007 (2017).

    Google Scholar 

  89. Yoshizawa, T. et al. Three-dimensional analysis of extrahepatic cholangiocarcinoma and tumor budding. J. Pathol. 251(4), 400–410. https://doi.org/10.1002/path.5474 (2020) . Accessed 21 June 2024.

  90. Santamaria, P. G., Moreno Bueno, G., Portillo, F. & Cano, A. EMT: Present and future in clinical oncology. Mol. Oncol. 11(7), 718–738. https://doi.org/10.1002/1878-0261.12091. Accessed 21 Jul 2024 (2017).

  91. Huang, Y., Hong, W. & Wei, X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol. 15, 129. https://doi.org/10.1186/s13045-022-01347-8 (2022) . Accessed 21 Jul 2024.

  92. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs] (2015). Accessed 04 Mar 2021.

  93. Su, Z. et al.. Adapting SAM to histopathology images for tumor bud segmentation in colorectal cancer. In Medical Imaging 2024: Digital and Computational Pathology (Tomaszewski, J.E., Ward, A.D. Eds.). 11. https://doi.org/10.1117/12.3006517. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12933/3006517/Adapting-SAM-to-histopathology-images-for-tumor-bud-segmentation-in/10.1117/12.3006517.full (SPIE, 2024). Accessed 24 Apr 2024.

  94. Enderle-Ammour, K. et al. Form follows function: Morphological and immunohistological insights into epithelial mesenchymal transition characteristics of tumor buds. Tumor Biol. 39(5), 1010428317705501. https://doi.org/10.1177/1010428317705501 (publisher: SAGE Publications Ltd STM). Accessed 24 Jul 2024 (2017).

  95. Reggiani Bonetti, L., Barresi, V., Bettelli, S., Domati, F. & Palmiere, C. Poorly differentiated clusters (PDC) in colorectal cancer: What is and ought to be known. Diagn. Pathol. 11, 31 (2016) https://doi.org/10.1186/s13000-016-0481-7. Accessed 21 June 2024.

  96. Shivji, S., Conner, J. R., Barresi, V. & Kirsch, R. Poorly differentiated clusters in colorectal cancer: A current review and implications for future practice. Histopathology 77(3), 351–368. https://doi.org/10.1111/his.14128. _eprint:https://onlinelibrary.wiley.com/doi/pdf/10.1111/his.14128 (2020). Accessed 21 June 2024

  97. Haddad, T. et al. Tumor budding and poorly differentiated clusters as a biological continuum in colorectal cancer invasion and prognosis. Sci. Rep. 15. https://doi.org/10.1038/s41598-025-00866-x (2025) .

  98. Aherne, S. et al. Collaborators at the Centre for Colorectal Disease and International Tumour Budding Consortium Funded by the Dutch Cancer Society: Tumour budding as a prognostic biomarker in biopsies and resections of neoadjuvant-treated rectal adenocarcinoma. Histopathology 85(2), 224–243. https://doi.org/10.1111/his.15192. Accessed 17 Jul 2024 (2024).

  99. Hansen, T. F. et al. Prognostic impact of CDX2 in stage II colon cancer: Results from two nationwide cohorts. Br. J. Cancer 119(11), 1367–1373. https://doi.org/10.1038/s41416-018-0285-5. Accessed 02 Apr 2025 (2018).

Download references

Acknowledgements

The authors are thankful to Ana Frei Leni, Elias Baumann, Philipp Zens, Linda Studer, José Francisco Carreño Martinez, Jacob Hanimann, Javier Garcia Baroja and Mohamed Mansour Faye for valuable feedback during this work. The authors are also grateful to Dr. José A. Galvan, Therese Waldburger, Carmen Cardozo, Loredana-Ionela Daminescu and Stefan Reinhard for staining, scanning, data collection and technical assistance. Finally, the authors are also thankful to the UBELIX (http://www.id.unibe.ch/hpc) team, the HPC cluster at the University of Bern, for providing efficient services during this study.

Funding

M.G. was supported by the Swiss cancer league [KFS-5786-02-2023-R].

M.G. and C.S.D. were supported by Innosuisse [51906.1 IP-LS].

Author information

Author notes
  1. Mauro Gwerder and Cansaran Saygili Demir contributed equally to this work.

Authors and Affiliations

  1. Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland

    Mauro Gwerder, Cansaran Saygili Demir, Hannah L. Williams, Alessandro Lugli, Cristina Graham Martinez, Amjad Khan, Philipp Kirchner & Inti Zlobec

  2. Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland

    Mauro Gwerder

  3. Lunaphore Technologies SA, Tolochenaz, Switzerland

    Cansaran Saygili Demir & Joanna Kowal

  4. Department of Oncology, Geneva University Hospitals, Geneva, Switzerland

    Thibaud Koessler

  5. Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland

    Martin D. Berger

  6. Center for Scalable Data Analytics and AI (ScaDS.AI), Dresden/Leipzig, Germany

    Martin Weigert

  7. Faculty of Computer Science, TU Dresden, Dresden, Germany

    Martin Weigert

  8. Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

    Martin Weigert

Authors
  1. Mauro Gwerder
    View author publications

    Search author on:PubMed Google Scholar

  2. Cansaran Saygili Demir
    View author publications

    Search author on:PubMed Google Scholar

  3. Hannah L. Williams
    View author publications

    Search author on:PubMed Google Scholar

  4. Alessandro Lugli
    View author publications

    Search author on:PubMed Google Scholar

  5. Cristina Graham Martinez
    View author publications

    Search author on:PubMed Google Scholar

  6. Joanna Kowal
    View author publications

    Search author on:PubMed Google Scholar

  7. Amjad Khan
    View author publications

    Search author on:PubMed Google Scholar

  8. Philipp Kirchner
    View author publications

    Search author on:PubMed Google Scholar

  9. Thibaud Koessler
    View author publications

    Search author on:PubMed Google Scholar

  10. Martin D. Berger
    View author publications

    Search author on:PubMed Google Scholar

  11. Martin Weigert
    View author publications

    Search author on:PubMed Google Scholar

  12. Inti Zlobec
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Mauro Gwerder, Cansaran Saygili Demir and Inti Zlobec performed study conception and design; Cansaran Saygili Demir conducted data acquisition; Mauro Gwerder performed development of methodologies; Mauro Gwerder conducted data analysis and interpretation; Mauro Gwerder, Cansaran Saygili Demir, Cristina Graham Martinez, Martin D. Berger. Hanna L. Williams and Inti Zlobec provided administrative, technical, or material support; Martin Weigert and Inti Zlobec supervised the study. Mauro Gwerder, Cansaran Saygili Demir, Hannah L. Williams, Alessandro Lugli, Cristina Graham Martinez, Joanna Kowal, Amjad Khan, Philipp Kirchner, Thibaud Koessler, Martin D. Berger, Martin Weigert and Inti Zlobec read and approved the final paper.

Corresponding author

Correspondence to Inti Zlobec.

Ethics declarations

Competing interests

JK and CSD are current or former employees of Lunaphore, a Bio-Techne Brand, which is working on commercializing an automated platform to implement seqIF on standard tissue samples. JK is a Bio-Techne shareholder. There are other no conflicts of interest.

Ethics approval and consent to participate

The study was approved by the Ethics committee of the Canton of Bern under project number b2020-00498 and was performed according to the Human Research Act HFG 2014. Informed consent was obtained from all subjects.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information 1.

Supplementary Information 2.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwerder, M., Demir, C.S., Williams, H.L. et al. CDX2 expression dynamics in tumor clusters: a morpho-molecular biomarker in rectal cancer pretreatment biopsies revealed by sequential immunofluorescence. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40005-8

Download citation

  • Received: 30 September 2025

  • Accepted: 09 February 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40005-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Rectal cancer
  • Tumor budding
  • Epithelial–mesenchymal transition
  • Neoadjuvant chemoradiotherapy
  • Hyperplex immunofluorescence
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer