Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Ultra-high resolution multimodal MRI densely labelled holistic structural brain atlas
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Ultra-high resolution multimodal MRI densely labelled holistic structural brain atlas

  • José V. Manjón1,
  • Sergio Morell-Ortega1,
  • Marina Ruiz-Perez1,
  • Boris Mansencal2,
  • Edern Le Bot2,
  • Marien Gadea3,
  • Enrique Lanuza4,
  • Gwenaelle Catheline5,
  • Thomas Tourdias6,
  • Vincent Planche7,
  • Remi Giraud8,
  • Denis Rivière9,
  • Jean-Francois Mangin9,
  • Nicole Labra-Avila9,
  • Roberto Vivo-Hernando10,
  • Gregorio Rubio11,
  • Fernando Aparici-Robles12,
  • Maria de la Iglesia-Vaya13,14 &
  • …
  • Pierrick Coupé2 

Scientific Reports , Article number:  (2026) Cite this article

  • 366 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational biology and bioinformatics
  • Medical research
  • Neurology
  • Neuroscience

Abstract

In this paper, we introduce a novel structural holistic Atlas (holiAtlas) of human brain anatomy based on multimodal and high-resolution MRI that covers several anatomical levels from the organ level to the substructure level, using a new protocol for dense labelling generated from the fusion of multiple local protocols at different scales. This atlas was constructed by averaging images and segmentations of 75 healthy subjects from the Human Connectome Project database. Specifically, 3T MR images of T1, T2 and WMn (White Matter nulled) contrasts at 0.125 mm3 resolution were selected for this project. The images of these 75 subjects were nonlinearly registered and averaged using symmetric group-wise normalisation to construct the atlas. At the finest level, the proposed atlas has 350 different labels derived from 7 distinct delineation protocols. These labels were grouped at multiple scales, offering a coherent and consistent holistic representation of the brain across different levels of detail. This multiscale and multimodal atlas can be used to develop new ultra-high-resolution segmentation methods, potentially improving the early detection of neurological disorders. We make it publicly available to the scientific community.

Data availability

The generated holistic atlas, together with the multiscale label definitions, is publicly available through the following links: https://volbrain.net/public/data/holiatlas_v1.0.zip and https://zenodo.org/records/15690524 under a Creative Commons license.

References

  1. Evans, A. C. et al. 3D statistical neuroanatomical models from 305 MRI volumes. IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, 3, 1813–1817 (1993).

  2. Coupé, P. et al. Lifespan neurodegeneration of the human brain in multiple sclerosis. Hum Brain Mapp. 44(17), 5602–5611 (2023).

  3. Planche, V. et al. Anatomical MRI staging of frontotemporal dementia variants. Alzheimer’s Dement. 19, 3283–3294 (2023b).

    Google Scholar 

  4. Planche, V. et al. Staging of progressive supranuclear palsy-Richardson syndrome using MRI brain charts for the human lifespan. Brain Commun. 6(2), fcae055 (2024).

  5. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: an Approach To Cerebral Imaging (Thieme Medical Publishers, Inc., 1988).

  6. Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. R Soc. Lond. B Biol. Sci. 29 (1412), 1293–1322 (2001).

    Google Scholar 

  7. Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R. & Collins, D. L. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47 (1), S102 (2009).

    Google Scholar 

  8. Fonov, V., Evans, A. C., Botteron, K., Almli, C. R. & McKinstry Rand Collins, D. L. Unbiased average age-appropriate atlases for pediatric studies, NeuroImage, 54(1), 313–327 (2011).

  9. Hammers, A. et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the Temporal lobe. Hum. Brain Mapp. 19 (4), 224–247 (2003).

    Google Scholar 

  10. Shattuck, D. W. et al. Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage 39 (3), 1064–1080 (2007).

    Google Scholar 

  11. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15 (1), 273–289 (2002).

    Google Scholar 

  12. Rolls, E. T., Joliot, M. & Tzourio-Mazoyer, N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. NeuroImage 122, 1–5 (2015).

    Google Scholar 

  13. Rolls, E. T., Huang, C. C., Lin, C. P., Feng, J. & Joliot, M. Automated anatomical labelling atlas 3. Neuroimage 206, 116189 (2020).

    Google Scholar 

  14. Fan, L. et al. The human brainnetome atlas: A new brain atlas based on connectional architecture. Cereb. Cortex. 26 (8), 3508–3526 (2016).

    Google Scholar 

  15. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31 (3), 968–980 (2006).

    Google Scholar 

  16. Klein, A. et al. Mindboggling morphometry of human brains. PLoS Comput. Biol. 13 (2), e1005350 (2017).

    Google Scholar 

  17. Hawrylycz, M. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Google Scholar 

  18. Amunts, K. et al. BigBrain: an ultrahigh-resolution human brain model. Science 340, 1472–1475 (2013).

    Google Scholar 

  19. Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: A 3D probabilistic atlas of the human. Brain’s Cytoarchitecture Sci. 369, 988–992 (2020).

    Google Scholar 

  20. Lüsebrink, F. et al. Comprehensive ultrahigh resolution whole brain in vivo MRI dataset as a human Phantom. Sci. Data. 8 (1), 138 (2021).

    Google Scholar 

  21. Stucht, D. et al. Highest resolution in vivo human brain MRI using prospective motion correction. PLoS One. 10 (7), e0133921 (2015).

    Google Scholar 

  22. Singh, D. et al. Emerging trends in fast MRI using Deep-Learning reconstruction on undersampled k-Space data: A systematic review. Bioengineering 26 (9), 1012 (2023).

    Google Scholar 

  23. Zhanxiong Wu, X., Chen, S., Xie, J. & Shen, Y. Z. Super-resolution of brain MRI images based on denoising diffusion probabilistic model. Biomed. Signal Process. Control. 85, 104901 (2023).

    Google Scholar 

  24. Grover, J. et al. Super-resolution neural networks improve the Spatiotemporal resolution of adaptive MRI-guided radiation therapy. Commun. Med. 4, 64 (2024).

    Google Scholar 

  25. Schira, M. M. et al. HumanBrainAtlas: an in vivo MRI dataset for detailed segmentations. Brain Struct. Funct. 228, 1849–1863 (2023).

    Google Scholar 

  26. Casamitjana, A. et al. A next-generation, histological atlas of the human brain and its application to automated brain MRI segmentation. bioRxiv, 2024.02.05.579016v1 (2024).

  27. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536 (7615), 171–178 (2016).

    Google Scholar 

  28. Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Robles, M. & Collins, L. Adaptive Non-Local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging. 31, 192–203 (2010).

    Google Scholar 

  29. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging. 29 (6), 1310–1320 (2010).

    Google Scholar 

  30. Avants, B. B. et al. A reproducible evaluation of ants similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

    Google Scholar 

  31. Manjón, J. V. et al. Robust MRI brain tissue parameter Estimation by multistage outlier rejection. Magn. Reson. Med. 59 (4), 866–873 (2008).

    Google Scholar 

  32. Dar, S. U. et al. Image synthesis in multi-contrast mri with conditional generative adversarial networks. IEEE Trans. Med. Imaging. 38, 2375–2388 (2019).

    Google Scholar 

  33. Manjon, J. V., Romero, J. E. & Coupé, P. Deep learning based MRI contrast synthesis using full volume prediction. Biomedical Phys. Eng. Express. 8, 1 (2021).

    Google Scholar 

  34. Manjón, J. V. et al. Deep ICE: A deep learning approach for MRI intracranial cavity extraction. (2020). https://arxiv.org/abs/2001.05720.

  35. Manjón, J. V. et al. vol2Brain: A new online pipeline for whole brain MRI analysis. Front. Neuroinformatics. 16, 862805 (2022).

    Google Scholar 

  36. Billot, B. et al. Automated segmentation of the hypothalamus and associated subunits in brain MRI, NeuroImage, 223, 117287. https://doi.org/10.1016/j.neuroimage.2020.117287 (2020).

  37. Mangin, J. F. et al. A framework to study the cortical folding patterns. Neuroimage 23, S129–S138 (2004).

    Google Scholar 

  38. Perrot, M., Rivière, D. & Mangin, J. F. Cortical sulci recognition and Spatial normalization. Med. Image. Anal. 15 (4), 529–550 (2011).

    Google Scholar 

  39. Rivière, D. et al. Browsing multiple subjects when the atlas adaptation cannot be achieved via a warping strategy. Front. Neuroinformatics. 16, 7 (2022).

    Google Scholar 

  40. Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U S A. 97, 11050–11055 (2000).

    Google Scholar 

  41. Iglesias, J. E. et al. Brainstem: bayesian segmentation of brainstem structures in MRI. NeuroImage 113, 184–195 (2015).

    Google Scholar 

  42. Saygin, Z. M. et al. (joint 1st authors), High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. Neuroimage, 155, 370–382 (2017).

  43. Iglesias, J. E. et al. Hippocampus: A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 115, 117–137 (2015).

    Google Scholar 

  44. Manjón, J. V. et al. pBrain: A novel pipeline for Parkinson related brain structure segmentation. Neuroimage:Clinical 25, 102184 (2020).

    Google Scholar 

  45. Romero, J. E., Coupé, P. & Manjón, J. V. HIPS: A new hippocampus subfield segmentation method. Neuroimage 163, 286–295 (2017).

    Google Scholar 

  46. Romero, J. E. et al. CERES: A new cerebellum lobule segmentation method. Neuroimage 147, 916–924 (2017).

    Google Scholar 

  47. Carass, A. et al. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance imaging. Neuroimage 183, 30099076 (2018).

    Google Scholar 

  48. Yushkevich, P. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31 (3), 1116–1128 (2006).

    Google Scholar 

  49. Morell-Ortega, S. et al. DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI. Neuroimage 308, 121063 (2025).

    Google Scholar 

  50. Jena, R., Chaudhari, P. & Gee, J. C. FireANTs: adaptive riemannian optimization for multi-Scale Diffeomorphic Matching. (2025). https://arxiv.org/abs/2404.01249

  51. Bazin, P. L., Alkemade, A., Mulder, M. J., Henry, A. G. & Forstmann, B. U. Multi-contrast Anat. Subcortical Struct. Parcellation eLife 9:e59430. (2020).

    Google Scholar 

  52. Bazin, P. L. et al. Automated parcellation and atlasing of the human subcortex with ultra-high resolution quantitative MRI. Imaging Neuroscience 3, imag_a_00560 (2025).

  53. Coupé, P. et al. Lifespan changes of the human brain in alzheimer’s disease. Sci. Rep. 9, 3998 (2019).

    Google Scholar 

  54. Planche, V. et al. Structural progression of alzheimer’s disease over decades: the MRI staging scheme. Brain Commun. 4 (3), 109 (2022).

    Google Scholar 

  55. Gonzalez-Rodriguez, M. et al. Human amygdala involvement in alzheimer’s disease revealed by Stereological and dia-PASEF analysis. Brain Pathol. 33 (5), e13180 (2023).

    Google Scholar 

  56. West, M. J., Kawas, C. H., Martin, L. J. & Troncoso, J. C. The CA1 region of the human hippocampus is a hot spot in alzheimer’s disease. Ann. N Y Acad. Sci. 908, 255–259 (2000).

    Google Scholar 

  57. Kril, J. J., Hodges, J. & Halliday, G. Relationship between hippocampal volume and CA1 neuron loss in brains of humans with and without alzheimer’s disease. Neurosci. Lett. 361, 9–12 (2004).

    Google Scholar 

  58. Tanner, J. J., McFarland, N. R. & Price, C. C. Striatal and hippocampal atrophy in idiopathic parkinson’s disease patients without dementia: A morphometric analysis. Front. Neurol. 8, 139 (2017).

    Google Scholar 

  59. Coupé, P. et al. AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation, NeuroImage, 219, 117026 (2020).

  60. Tustison, N. J. et al. Large-scale evaluation of ants and freesurfer cortical thickness measurements. Neuroimage 1, 99:166–179 (2014).

    Google Scholar 

  61. Winterburn, J. L. et al. A novel in vivo atlas of human hippocampal subfields using high-resolution 3 T magnetic resonance imaging. NeuroImage 74, 254–265 (2013).

    Google Scholar 

Download references

Acknowledgements

This work has been developed thanks to the projects PID2020-118608RB-I00 and PID2023-152127OB-I00 of the Ministerio de Ciencia e Innovacion de España. This work also benefited from the support of the projects DeepvolBrain, HoliBrain and FOLDDICO of the French National Research Agency (ANR-18-CE45-0013, ANR-23-CE45-0020-01 and ANR-20-CHIA-0027-01). Finally, this study received financial support from the French government in the framework of the University of Bordeaux’s France 2030 program / RRI “IMPACT, the PEPR StratifyAging and the IHU VBHI (ANR-23-IAHU-0001). We thank the support of ITACA (Institute of Information and Communication Technologies) at UPV (Universitat Politècnica de València).

Author information

Authors and Affiliations

  1. Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain

    José V. Manjón, Sergio Morell-Ortega & Marina Ruiz-Perez

  2. CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, in2brain, Talence, F-33400, France

    Boris Mansencal, Edern Le Bot & Pierrick Coupé

  3. Department of Psychobiology, Faculty of Psychology, Universitat de Valencia, Valencia, Spain

    Marien Gadea

  4. Department of Cell Biology, University Valencia, Burjassot, 46100, Valencia, Spain

    Enrique Lanuza

  5. University Bordeaux, CNRS, EPHE, PSL, INCIA, UMR 5283, Bordeaux, F-33000, France

    Gwenaelle Catheline

  6. Service de Neuroimagerie diagnostique et thérapeutique, CHU de Bordeaux, Bordeaux, F-33000, France

    Thomas Tourdias

  7. Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, UMR 5293, Bordeaux, F-33000, France

    Vincent Planche

  8. Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, F-33400, France

    Remi Giraud

  9. NeuroSpin, BAOBAB lab, CEA Saclay, Gif-sur-Yvette, France

    Denis Rivière, Jean-Francois Mangin & Nicole Labra-Avila

  10. Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain

    Roberto Vivo-Hernando

  11. Departamento de matemática aplicada, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain

    Gregorio Rubio

  12. Área de Imagen Médica. Hospital Universitario y Politécnico La Fe, Valencia, Spain

    Fernando Aparici-Robles

  13. Unidad Mixta de Imagen Biomédica FISABIO-CIPF. Fundación para el Fomento de la Investigación Sanitario y Biomédica de la Comunidad Valenciana, Valencia, Spain

    Maria de la Iglesia-Vaya

  14. CIBERSAM, ISC III, Av. Blasco Ibáñez 15, València, 46010, Spain

    Maria de la Iglesia-Vaya

Authors
  1. José V. Manjón
    View author publications

    Search author on:PubMed Google Scholar

  2. Sergio Morell-Ortega
    View author publications

    Search author on:PubMed Google Scholar

  3. Marina Ruiz-Perez
    View author publications

    Search author on:PubMed Google Scholar

  4. Boris Mansencal
    View author publications

    Search author on:PubMed Google Scholar

  5. Edern Le Bot
    View author publications

    Search author on:PubMed Google Scholar

  6. Marien Gadea
    View author publications

    Search author on:PubMed Google Scholar

  7. Enrique Lanuza
    View author publications

    Search author on:PubMed Google Scholar

  8. Gwenaelle Catheline
    View author publications

    Search author on:PubMed Google Scholar

  9. Thomas Tourdias
    View author publications

    Search author on:PubMed Google Scholar

  10. Vincent Planche
    View author publications

    Search author on:PubMed Google Scholar

  11. Remi Giraud
    View author publications

    Search author on:PubMed Google Scholar

  12. Denis Rivière
    View author publications

    Search author on:PubMed Google Scholar

  13. Jean-Francois Mangin
    View author publications

    Search author on:PubMed Google Scholar

  14. Nicole Labra-Avila
    View author publications

    Search author on:PubMed Google Scholar

  15. Roberto Vivo-Hernando
    View author publications

    Search author on:PubMed Google Scholar

  16. Gregorio Rubio
    View author publications

    Search author on:PubMed Google Scholar

  17. Fernando Aparici-Robles
    View author publications

    Search author on:PubMed Google Scholar

  18. Maria de la Iglesia-Vaya
    View author publications

    Search author on:PubMed Google Scholar

  19. Pierrick Coupé
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Author contributionJosé V. Manjón: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing - Original Draft, Writing - Review & Editing, Supervision, Project administration and Funding acquisition.Sergio Morell-Ortega: Software, Validation, Investigation, Data curation, Writing - Review & Editing.Marina Ruiz-Perez: Software, Validation, Investigation, Data curation, Writing - Review & Editing, Visualization.Boris Mansencal: Methodology, Software, Validation, Formal analysis, Investigation, Writing - Review & EditingEdern Le Bot: Software, Validation, Investigation, Data curation, Writing - Review & Editing, Visualization.Marien Gadea: Conceptualization, Validation, Formal analysis, Investigation, Resources, Data curation, Review & Editing, Visualization, Supervision and Funding acquisition.Enrique Lanuza: Validation, Formal analysis, Investigation, Data curation, Writing - Review & Editing, VisualizationGwenaelle Catheline: Validation, Formal analysis, Investigation, Data curation, Writing - Review & Editing, VisualizationThomas Tourdias: Validation, Formal analysis, Investigation, Data curation, Writing - Review & Editing, VisualizationVincent Planche: Validation, Formal analysis, Investigation, Data curation, Writing - Review & Editing, VisualizationRemi Giraud: Software, Validation, Formal analysis, Investigation, Writing - Review & EditingDenis Rivière: Software, Validation, Formal analysis, Investigation, Writing - Review & Editing.Jean-Francois Mangin: Software, Validation, Formal analysis, Investigation, Data curation, Writing - Review & Editing, VisualizationNicole Labra-Avila: Software, Validation, Formal analysis, Investigation, Data curation, Writing - Review & Editing, VisualizationRoberto Vivo-Hernando: Formal analysis, Investigation, Writing - Review & Editing.Gregorio Rubio: Formal analysis, Investigation, Writing - Review & Editing.Fernando Aparici: Validation, Formal analysis, Investigation, Data curation, Writing - Review & Editing, VisualizationMaria de la Iglesia-Vaya: Formal analysis, Investigation, Resources, Data curation, Writing - Review & Editing, Visualization.Pierrick Coupé: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing - Original Draft, Writing - Review & Editing, Supervision, Project administration and Funding acquisition.

Corresponding author

Correspondence to José V. Manjón.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjón, J.V., Morell-Ortega, S., Ruiz-Perez, M. et al. Ultra-high resolution multimodal MRI densely labelled holistic structural brain atlas. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40186-2

Download citation

  • Received: 31 July 2025

  • Accepted: 11 February 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40186-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Atlas
  • Multimodal
  • Holistic
  • Segmentation
  • Brain volume analysis
  • MRI
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing