Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Bi-functional Caulis polygoni multiflori inhibits Staphylococcus aureus and potentiates the activity of erythromycin in vitro
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 15 February 2026

Bi-functional Caulis polygoni multiflori inhibits Staphylococcus aureus and potentiates the activity of erythromycin in vitro

  • Zhihui Li1,2,3 na1,
  • Wenlong Wang1,2,3 na1,
  • Wenbin Xu1,2,3,
  • Xiaonan Song1,2,3,
  • Chengtan Wang1,2,3,
  • Yan Wang1,2,3,
  • Zhiqing You1,2,3,
  • Min Feng1,2,3,
  • Juanjuan Fu1,2,3 &
  • …
  • Yinguang Cao1,2,3,4 

Scientific Reports , Article number:  (2026) Cite this article

  • 179 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biotechnology
  • Microbiology

Abstract

Staphylococcus aureus (SA), particularly methicillin-resistant Staphylococcus aureus (MRSA), represents a major clinical challenge due to its ability to form biofilms, which contribute to treatment failure and recurrent infections. This study evaluated the antibacterial and anti-biofilm activity of the water extract of Caulis Polygoni Multiflori (CPM) against clinical and standard strains of SA. CPM exhibited consistent bacteriostatic and bactericidal effects, with time-kill assays confirming rapid elimination of planktonic bacteria at 2×MIC. Mechanistically, CPM dose-dependently inhibited bacterial adhesion to fibrin and suppressed biofilm formation, though it did not disrupt pre-formed biofilms, likely due to poor penetration into the biofilm matrix. In combination studies, CPM showed clear synergistic or additive effects with erythromycin in broth microdilution assays, but not in disk diffusion tests, possibly reflecting limited diffusion of CPM components in solid media. Importantly, CPM’s activity was independent of bacterial resistance profiles. These findings indicate that CPM acts through both direct bactericidal activity and anti-virulence mechanisms, and represents a promising candidate for topical combination therapy against MRSA skin and wound infections. Further studies are needed to elucidate its molecular mechanisms.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Touaitia, R. et al. Staphylococcus aureus: A review of the pathogenesis and virulence Mechanisms. Antibiotics (Basel). 14(5), 470, (2025). https://doi.org/10.3390/antibiotics14050470

  2. Tong, S. Y. C., Fowler, V. G. Jr, Skalla, L. & Holland, T. L. Management of Staphylococcus aureus bacteremia: A review. JAMA 334 (9), 798–808. https://doi.org/10.1001/jama.2025.4288 (2025).

    Google Scholar 

  3. Foster, T. J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 41 (3), 430–449 (2017).

    Google Scholar 

  4. Jiang, Y. et al. Genomic and phenotypic adaptations of methicillin resistant Staphylococcus aureus during Vancomycin therapy. Sci. Rep. 15 (1), 15346. https://doi.org/10.1038/s41598-025-99639-9 (2025).

    Google Scholar 

  5. Pengfei, S. et al. & Yong W. Novel antibiotics against Staphylococcus aureus without detectable resistance by targeting proton motive force and FtsH. MedComm2020, 6(1), e70046 https://doi.org/10.1002/mco2.70046 (2025).

    Google Scholar 

  6. Shi, J. et al. Non-Membrane active peptide resensitizes MRSA to β-Lactam antibiotics and inhibits S. aureus virulence. Adv. Sci. (Weinh). 12 (15), e2416260. https://doi.org/10.1002/advs.202416260 (2025).

    Google Scholar 

  7. Liu, X. et al. Differences in Pharmacokinetic/Pharmacodynamic parameters of tedizolid against VRE and MRSA. Pharm. Res. 40 (1), 187–196. https://doi.org/10.1007/s11095-022-03425-5 (2023).

    Google Scholar 

  8. Hasannejad-Bibalan, M., Mojtahedi, A., Biglari, H., Halaji, M. & Ebrahim-Saraie, S. Antibacterial activity of Tedizolid, a novel Oxazolidinone against Methicillin-Resistant Staphylococcus aureus: A systematic review and Meta-Analysis. Microb. Drug Resist. 25 (9), 1330–1337. https://doi.org/10.1089/mdr.2018.0457 (2019).

    Google Scholar 

  9. Morrisette, T. et al. Evaluation of Omadacycline alone and in combination with Rifampin against Staphylococcus aureus and Staphylococcus epidermidis in an in vitro Pharmacokinetic/Pharmacodynamic biofilm model. Antimicrob. Agents Chemother. 67 (6), e0131722. https://doi.org/10.1128/aac.01317-22 (2023).

    Google Scholar 

  10. Wang, J. et al. Effect of Emodin on Streptococcus suis by targeting β-ketoacyl-acyl carrier protein synthase Ⅱ. Phytomedicine 143, 56821 (2025).

    Google Scholar 

  11. Yang, W. et al. Traditional Chinese medicine Tanreqing targets both cell division and virulence in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 12 (884045). https://doi.org/10.3389/fcimb.2022.884045 (2022).

  12. Liang, Y., Zhang, H., Dai, S., Cong, Y. & Wu, W. Inhibiting Staphylococcus aureus virulence factors: advances in traditional Chinese medicines and active compounds. Curr. Microbiol. 82 (6), 247. https://doi.org/10.1007/s00284-025-04236-8 (2025).

    Google Scholar 

  13. Chen, Y. et al. Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One. 11 (4), e0153468. https://doi.org/10.1371/journal.pone.0153468 (2016).

    Google Scholar 

  14. Abreu, A. C., Saavedra, M. J., Simões, L. C. & Simões, M. Combinatorial approaches with selected phytochemicals to increase antibiotic efficacy against Staphylococcus aureus biofilms. Biofouling 32 (9), 1103–1114. https://doi.org/10.1080/08927014.2016.1232402 (2016).

    Google Scholar 

  15. Brackman, G. et al. The quorum sensing inhibitor Hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci. Rep. 6, 20321. https://doi.org/10.1038/srep20321 (2016).

    Google Scholar 

  16. Li, C. X., Liu, Y., Zhang, Y. Z., Li, J. C. & Lai, J. Astragalus polysaccharide: a review of its Immunomodulatory effect. Arch. Pharm. Res. 45 (6), 367–389. https://doi.org/10.1007/s12272-022-01393-3 (2022).

    Google Scholar 

  17. Kachur, K. & Suntres, Z. E. The antimicrobial properties of ginseng and ginseng extracts. Expert Rev. Anti Infect. Ther. 14 (1), 81–94. https://doi.org/10.1586/14787210.2016.1118345 (2016).

    Google Scholar 

  18. Blundell, R. et al. The phytochemistry of ganoderma species and their medicinal potentials. Am. J. Chin. Med. 51 (4), 859–882. https://doi.org/10.1142/S0192415X23500404 (2023).

    Google Scholar 

  19. Yang, W. et al. JY Shi. Study on bacteriostasis activity of total flavonoids from Gaulis polygoni multifori. Scinece Technol. Food Ind. 9 (33), 111–113 (2012).

    Google Scholar 

  20. Feng, S. et al. Hypoglycemic activities of commonly-used traditional Chinese herbs. Am. J. Chin. Med. 41 (4), 849–864 (2013).

    Google Scholar 

  21. Fattorusso, R., Frutos, S., Sun, X., Sucher, N. J. & Pellecchia, M. Traditional Chinese medicines with caspase-inhibitory activity. Phytomedicine 13 (1–2), 16–22 (2006).

    Google Scholar 

  22. Chen, F. P. et al. Prescriptions of Chinese herbal medicines for insomnia in Taiwan during 2002. Evid. Based Complement. Alternat. Med. 2011, 236341 (2011).

  23. Zuo, G. Y. et al. Screening of Chinese medicinal plants for Inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J. Ethnopharmacol. 120 (2), 287–290 (2008).

    Google Scholar 

  24. Tüzemen, N. Ü. et al. Synergistic antibacterial activity of ceftazidime-avibactam in combination with colistin, gentamicin, amikacin, and fosfomycin against carbapenem-resistant Klebsiella pneumoniae. Sci. Rep. 14 (1), 17567. https://doi.org/10.1038/s41598-024-67347-5 (2024).

    Google Scholar 

  25. Funk, B. et al. Efficacy and potential use of novel sustained release fillers as intracanal medicaments against Enterococcus faecalis biofilm in vitro. BMC Oral Health. 19 (1), 190 (2019).

    Google Scholar 

  26. Soltani, R., Khalili, H. & Shafiee, F. Double-disk synergy test for detection of synergistic effect between antibiotics against nosocomial strains of Staphylococcus aureus. J. Res. Pharm. Pract. 1 (1), 21–24 (2012).

    Google Scholar 

  27. Wu, D. et al. Purification and characterization of bacteriocin produced by a strain of Lacticaseibacillus rhamnosus ZFM216. Front. Microbiol. 13, 1050807 (2022).

    Google Scholar 

  28. Krishnan, S., Venkatachalam, P., Shanmugam, S. R. & Paramasivam, N. Fractional inhibitory concentration of bio-actives from agricultural waste disassembles biofilms and quenches virulence of nosocomial pathogens. J. Med. Microbiol. 74 (3), 001980 (2025).

    Google Scholar 

  29. Surana, A. et al. Comparative evaluation of minimal inhibitory concentration and minimal bactericidal concentration of various herbal irrigants against Enterococcus faecalis. J. Conserv. Dent. Endod. 27 (7), 780–784. https://doi.org/10.4103/JCDE.JCDE_349_23 (2024).

    Google Scholar 

  30. Yan, Y. et al. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiot. (Basel). 10 (3), 318 (2021).

    Google Scholar 

  31. Hallmann, L. Antibacterial polysaccharides in dental implantology. Mar. Drugs. 23 (8), 321. https://doi.org/10.3390/md23080321 (2025).

    Google Scholar 

  32. Mbeng Obame, R. B. et al. Targeted discovery of sesquiterpene Indole alkaloids from Greenwayodendron suaveolens. Phytochemistry 241, 114664. https://doi.org/10.1016/j.phytochem.2025.114664 (2026).

  33. Ciriminna, R. et al. Pagliaro M. Citrus flavonoids as antimicrobials. Chem. Biodivers. 22 (6), e202403210. https://doi.org/10.1002/cbdv.202403210 (2025).

    Google Scholar 

  34. Moran, G. J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl. J. Med. 355 (7), 666–674. https://doi.org/10.1056/NEJMoa055356 (2006).

    Google Scholar 

  35. Guo, Y., Song, G., Sun, M., Wang, J. & Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 10, 107. https://doi.org/10.3389/fcimb.2020.00107 (2020).

  36. CHINET. (ed China Antimicrobial Resistance Surveillance System). (2022).

  37. Shariati, A. et al. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative Staphylococci strains: a systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 9 (9), 56. https://doi.org/10.1186/s13756-020-00714-9 (2020).

    Google Scholar 

  38. Daum, R. S. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N Engl. J. Med. 357 (4), 380–390. https://doi.org/10.1056/NEJMcp070747 (2007).

    Google Scholar 

  39. Babu Rajendran, N. et al. Mandatory surveillance and outbreaks reporting of the WHO priority pathogens for research & discovery of new antibiotics in European countries. Clin. Microbiol. Infect. 26 (7), 943.e1–943.e6 (2020).

  40. Wang, J., Zhang, Z., Mei, X., Xu, Y. & Feng, Z. Research progress on antibacterial effect and mechanism of flavonoids. Jiangsu Agricultural Sci. 51 (1), 1–8 (2023).

    Google Scholar 

  41. Ren, X. et al. Natural flavone hispidulin protects mice from Staphylococcus aureus pneumonia by Inhibition of α-hemolysin production via targeting AgrAC. Microbiol. Res. 261, 127071. https://doi.org/10.1016/j.micres.2022.127071 (2022).

  42. Wang, T., Zhang, P., Lv, H., Deng, X. & Wang, J. A. Natural dietary flavone myricetin as an α-hemolysin inhibitor for controlling Staphylococcus aureus infection. Front. Cell. Infect. Microbiol. 10, 330. https://doi.org/10.3389/fcimb.2020.00330 (2020).

  43. Bian, N. et al. 7,8-Dihydroxyflavone attenuates the virulence of Staphylococcus aureus by inhibiting alpha-hemolysin. World J. Microbiol. Biotechnol. 38 (11), 200. https://doi.org/10.1007/s11274-022-03378-2 (2022).

    Google Scholar 

  44. Das, M. C. et al. Vitexin alters Staphylococcus aureus surface hydrophobicity to obstruct biofilm formation. Microbiol. Res. 263, 127126. https://doi.org/10.1016/j.micres.2022.127126 (2022).

  45. Yang, W. et al. Study on bacteriostasis activity of total flavonoids from Gau/is polygoni multifori. Sci. Technol. Food Ind. 33 (9), 111–113 (2012).

    Google Scholar 

  46. Ishak, A., Mazonakis, N., Spernovasilis, N., Akinosoglou, K. & Tsioutis, C. Bactericidal versus bacteriostatic antibacterials: clinical significance, differences and synergistic potential in clinical practice. J. Antimicrob. Chemother. 80 (1), 1–17. https://doi.org/10.1093/jac/dkae380 (2025).

    Google Scholar 

  47. Sen, C. K., Roy, S., Mathew-Steiner, S. S. & Gordillo, G. M. Biofilm management in wound care. Plast. Reconstr. Surg. 148 (2), 275e–288e. https://doi.org/10.1097/PRS.0000000000008142 (2021).

    Google Scholar 

  48. Percival, S. L., McCarty, S. M. & Lipsky, B. Biofilms and wounds: an overview of the evidence. Adv. Wound Care (New Rochelle). 4 (7), 373–381. https://doi.org/10.1089/wound.2014.0557 (2015).

    Google Scholar 

  49. Percival, S. L., Vuotto, C., Donelli, G. & Lipsky, B. A. Biofilms and wounds: an identification algorithm and potential treatment options. Adv. Wound Care (New Rochelle). 4 (7), 389–397. https://doi.org/10.1089/wound.2014.0574 (2015).

    Google Scholar 

  50. Choi, M. et al. Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. Int. J. Biol. Macromol. 142, 680–692. https://doi.org/10.1016/j.ijbiomac.2019.10.009 (2020).

    Google Scholar 

  51. Hurlow, J. et al. Clinical biofilms: A challenging frontier in wound care. Adv. Wound Care (New Rochelle). 4 (5), 295–301. https://doi.org/10.1089/wound.2014.0567 (2015).

    Google Scholar 

  52. da Silva, P. M. et al. Napoleão TH. Punica granatum Sarcotesta lectin (PgTeL) impairs growth, structure, viability, aggregation, and biofilm formation ability of Staphylococcus aureus clinical isolates. Int. J. Biol. Macromol. 123, 600–608. https://doi.org/10.1016/j.ijbiomac.2018.11.030 (2019).

    Google Scholar 

  53. Idrees, M., Sawant, S., Karodia, N. & Rahman, A. Staphylococcus aureus biofilm: Morphology, Genetics, pathogenesis and treatment strategies. Int. J. Environ. Res. Public. Health. 18 (14), 7602. https://doi.org/10.3390/ijerph18147602 (2021).

    Google Scholar 

Download references

Acknowledgements

The determination of bacterial particle size was assisted by Professor Shujuan Yao from Liaocheng University, and we would like to express our sincere gratitude.

Funding

Shandong Provincial Natural Science Foundation (ZR2017MH099); Key Project of Research and Development Fund of Shandong Second Medical University (2025FYZ018);Jieping Wu Foundation Research Special Project, 320.6750.2025-3-55.

Author information

Author notes
  1. Zhihui Li and Wenlong Wang contributed equally to this work.

Authors and Affiliations

  1. Liaocheng People’s Hospital, Shandong Second Medical University, Shandong Liaocheng, 252000, China

    Zhihui Li, Wenlong Wang, Wenbin Xu, Xiaonan Song, Chengtan Wang, Yan Wang, Zhiqing You, Min Feng, Juanjuan Fu & Yinguang Cao

  2. Liaocheng Key Laboratory of Medical Microbiology and Immunology, Shandong Liaocheng, 252000, China

    Zhihui Li, Wenlong Wang, Wenbin Xu, Xiaonan Song, Chengtan Wang, Yan Wang, Zhiqing You, Min Feng, Juanjuan Fu & Yinguang Cao

  3. Clinical Laboratory Center, Liaocheng People’s Hospital, Shandong Liaocheng, 252000, China

    Zhihui Li, Wenlong Wang, Wenbin Xu, Xiaonan Song, Chengtan Wang, Yan Wang, Zhiqing You, Min Feng, Juanjuan Fu & Yinguang Cao

  4. Shandong Second Medical University, Shandong Weifang, 261053, China

    Yinguang Cao

Authors
  1. Zhihui Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Wenlong Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Wenbin Xu
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiaonan Song
    View author publications

    Search author on:PubMed Google Scholar

  5. Chengtan Wang
    View author publications

    Search author on:PubMed Google Scholar

  6. Yan Wang
    View author publications

    Search author on:PubMed Google Scholar

  7. Zhiqing You
    View author publications

    Search author on:PubMed Google Scholar

  8. Min Feng
    View author publications

    Search author on:PubMed Google Scholar

  9. Juanjuan Fu
    View author publications

    Search author on:PubMed Google Scholar

  10. Yinguang Cao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Yinguang Cao is responsible for experimental design, Zhihui Li and Wenlong Wang are responsible for experimental design and biofilm related experiments, wenbin Xu, Xiaonan Song and Chengtan Wang are responsible for isolation, collection of bacterial strains, Yan Wang and Zhiqing You are responsible for preservation and activation of bacterial strains, Min Feng and Juanjuan Fu are responsible for preparation of CPM and synergism assay.

Corresponding author

Correspondence to Yinguang Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, W., Xu, W. et al. Bi-functional Caulis polygoni multiflori inhibits Staphylococcus aureus and potentiates the activity of erythromycin in vitro. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40228-9

Download citation

  • Received: 04 November 2025

  • Accepted: 11 February 2026

  • Published: 15 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40228-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Caulis polygoni multiflori
  • Antibacterial activity
  • Synergistic effect
  • MRSA
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research