Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
ABE9 fused to SpRY Cas9 nickase enables precise generation of bystander free mouse models
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

ABE9 fused to SpRY Cas9 nickase enables precise generation of bystander free mouse models

  • Jun Kai Ong  ORCID: orcid.org/0009-0005-1865-94651 nAff5,
  • Sayari Bhunia1,2,3,
  • Beate Hilbert1,
  • Vanessa Kirschner1,2,
  • Sascha Duglosz4,
  • Frank Zimmermann4,
  • Marc Freichel  ORCID: orcid.org/0000-0003-1387-26361,2 &
  • …
  • Alex Cornean  ORCID: orcid.org/0000-0003-3727-70571,2 

Scientific Reports , Article number:  (2026) Cite this article

  • 186 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biological techniques
  • Biotechnology
  • Developmental biology
  • Genetics

Abstract

Point mutations cause many genetic disorders, but modelling them in organisms is technically challenging. Creating mouse models that mimic these mutations is crucial for establishing a causal relationship between mutations and disease phenotype, thereby supporting the development of therapeutic strategies. Adenine base editors (ABEs) can correct single-nucleotide variants (SNVs) in disease modelling without double-stranded breaks (DSBs) or donor DNA, achieving higher product purity than traditional Cas9 methods. Earlier ABE techniques faced issues like limited targetability, bystander editing, and off-target effects. By combining two editor advancements, we introduced and tested ABE9-SpRY, an improved ABE variant fused with a PAM-flexible SpRY-Cas9 nickase. Our results show that ABE9-SpRY effectively generates three out of four targeted A-to-G mutations in mouse embryos, achieving desired editing efficiencies of up to 96% in individual adult founder mice. Furthermore, we observe fewer off-target events at predicted DNA sites in mouse embryos and in an orthogonal R-loop assay compared with ABE8e-SpRY. ABE9-SpRY also enhances product purity in mouse embryos under pooled sgRNA injections and, as a proof-of-concept, at a single endogenous locus in human induced pluripotent stem cells (hiPSCs), relative to ABE8e-SpRY. Our findings support ABE9-SpRY’s precision at the loci tested and PAM-flexible versatility. Although performance remains sequence-dependent, these data support ABE9-SpRY as a PAM-flexible tool for generating precise point-mutation models where bystander editing is a concern.

Similar content being viewed by others

Engineering a precise adenine base editor with minimal bystander editing

Article 13 October 2022

CRISPR-Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficient disruption of proteins in primary and immortalized cells

Article Open access 23 April 2021

Hypercompact adenine base editors based on a Cas12f variant guided by engineered RNA

Article 01 August 2022

Data availability

Oligonucleotide and sgRNA sequences used in this study are listed in Supplementary Tables 2, 3, 5, and 6. All raw NGS sequencing data generated in this study were in the NCBI Sequence Read Archive (SRA) database as a BioProject with the accession number PRJNA1291991. Plasmids encoding pCMV_ABE9-SpRY (/#242976) and pEF1α_ABE9-SpRY (#242977) are available at Addgene. Any other data and reagents will be made available upon reasonable request.

References

  1. Williams, R. W. in Principles of Molecular Medicine (eds Runge, M. S. & Patterson, C.) 53–60 (Humana Press, 2006). https://doi.org/10.1007/978-1-59259-963-9_8

  2. Perlman, R. L. Mouse models of human disease: An evolutionary perspective. Evol. Med. Public Health 2016, 170–176. https://doi.org/10.1093/emph/eow014 (2016).

    Google Scholar 

  3. Smith, P., DiLillo, D. J., Bournazos, S., Li, F. & Ravetch, J. V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl. Acad. Sci. U. S. A. 109, 6181–6186. https://doi.org/10.1073/pnas.1203954109 (2012).

    Google Scholar 

  4. Scherrer, G. et al. Knockin mice expressing fluorescent δ-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc. Natl. Acad. Sci. U. S. A. 103, 9691–9696. https://doi.org/10.1073/pnas.0603359103 (2006).

    Google Scholar 

  5. Lee, H. Genetically engineered mouse models for drug development and preclinical trials. Biomol. Ther. 22, 267–274. https://doi.org/10.4062/biomolther.2014.074 (2014).

    Google Scholar 

  6. Passier, R., Orlova, V. & Mummery, C. Complex tissue and disease modeling using hiPSCs. Cell Stem Cell 18, 309–321. https://doi.org/10.1016/j.stem.2016.02.011 (2016).

    Google Scholar 

  7. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823. https://doi.org/10.1126/science.1231143 (2013).

    Google Scholar 

  8. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506. https://doi.org/10.1038/nrm.2017.48 (2017).

    Google Scholar 

  9. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826. https://doi.org/10.1038/nbt.2623 (2013).

    Google Scholar 

  10. Hwang, G.-H. et al. Large DNA deletions occur during DNA repair at 20-fold lower frequency for base editors and prime editors than for Cas9 nucleases. Nat. Biomed. Eng. 9, 79–92. https://doi.org/10.1038/s41551-024-01277-5 (2025).

    Google Scholar 

  11. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771. https://doi.org/10.1038/nbt.4192 (2018).

    Google Scholar 

  12. Cullot, G. et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1136. https://doi.org/10.1038/s41467-019-09006-2 (2019).

    Google Scholar 

  13. Weisheit, I. et al. Detection of deleterious on-target effects after HDR-mediated CRISPR editing. Cell Rep. 31, 107689. https://doi.org/10.1016/j.celrep.2020.107689 (2020).

    Google Scholar 

  14. Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905. https://doi.org/10.1038/s41588-021-00838-7 (2021).

    Google Scholar 

  15. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471. https://doi.org/10.1038/nature24644 (2017).

    Google Scholar 

  16. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424. https://doi.org/10.1038/nature17946 (2016).

    Google Scholar 

  17. Rees, H. A. & Liu, D. R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788. https://doi.org/10.1038/s41576-018-0059-1 (2018).

    Google Scholar 

  18. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900. https://doi.org/10.1038/s41587-020-0491-6 (2020).

    Google Scholar 

  19. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676. https://doi.org/10.1038/nbt.2889 (2014).

    Google Scholar 

  20. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832. https://doi.org/10.1038/nbt.2647 (2013).

    Google Scholar 

  21. Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437. https://doi.org/10.1038/s41586-019-1161-z (2019).

    Google Scholar 

  22. Li, S., Liu, L., Sun, W., Zhou, X. & Zhou, H. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants. Genome Biol. 23, 51. https://doi.org/10.1186/s13059-022-02618-w (2022).

    Google Scholar 

  23. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891. https://doi.org/10.1038/s41587-020-0453-z (2020).

    Google Scholar 

  24. Chen, L. et al. Engineering a precise adenine base editor with minimal bystander editing. Nat. Chem. Biol. 19, 101–110. https://doi.org/10.1038/s41589-022-01163-8 (2023).

    Google Scholar 

  25. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296. https://doi.org/10.1126/science.aba8853 (2020).

    Google Scholar 

  26. Liao, J. et al. Therapeutic adenine base editing of human hematopoietic stem cells. Nat. Commun. 14, 207. https://doi.org/10.1038/s41467-022-35508-7 (2023).

    Google Scholar 

  27. Patel, S. & Kilpatrick, B. S. Two-pore channels and disease. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1865, 1678–1686. https://doi.org/10.1016/j.bbamcr.2018.05.004 (2018).

    Google Scholar 

  28. García-Rúa, V. et al. Increased expression of fatty-acid and calcium metabolism genes in failing human heart. PLoS ONE 7, e37505. https://doi.org/10.1371/journal.pone.0037505 (2012).

    Google Scholar 

  29. Deutsch, R., Kudrina, V., Freichel, M. & Grimm, C. Two-pore channel regulators—Who is in control?. Front. Physiol. https://doi.org/10.3389/fphys.2024.1534071 (2025).

    Google Scholar 

  30. Medert, R. et al. Genetic background influences expression and function of the cation channel TRPM4 in the mouse heart. Basic Res. Cardiol. 115, 70. https://doi.org/10.1007/s00395-020-00831-x (2020).

    Google Scholar 

  31. Stallmeyer, B. et al. Mutational spectrum in the Ca2+-activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum. Mutat. 33, 109–117. https://doi.org/10.1002/humu.21599 (2012).

    Google Scholar 

  32. Tu, T. et al. A precise and efficient adenine base editor. Mol. Ther. 30, 2933–2941. https://doi.org/10.1016/j.ymthe.2022.07.010 (2022).

    Google Scholar 

  33. Jeong, Y. K. et al. Adenine base editor engineering reduces editing of bystander cytosines. Nat. Biotechnol. 39, 1426–1433. https://doi.org/10.1038/s41587-021-00943-2 (2021).

    Google Scholar 

  34. Cao, X. et al. Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. Mol. Ther. Nucleic Acids 28, 732–742. https://doi.org/10.1016/j.omtn.2022.04.032 (2022).

    Google Scholar 

  35. Zhang, Z. et al. Engineering an adenine base editor in human embryonic stem cells with minimal DNA and RNA off-target activities. Mol. Ther. Nucleic Acids 29, 502–510. https://doi.org/10.1016/j.omtn.2022.07.026 (2022).

    Google Scholar 

  36. Li, G. et al. A novel base editor SpRY-ABE8eF148A mediates efficient A-to-G base editing with a reduced off-target effect. Mol. Ther. Nucleic Acids 31, 78–87. https://doi.org/10.1016/j.omtn.2022.12.001 (2023).

    Google Scholar 

  37. Xiong, X. et al. Split complementation of base editors to minimize off-target edits. Nat. Plants 9, 1832–1847. https://doi.org/10.1038/s41477-023-01540-8 (2023).

    Google Scholar 

  38. Zeng, H. et al. A split and inducible adenine base editor for precise in vivo base editing. Nat. Commun. 14, 5573. https://doi.org/10.1038/s41467-023-41331-5 (2023).

    Google Scholar 

  39. Kim, Y.-h et al. Sniper2L is a high-fidelity Cas9 variant with high activity. Nat. Chem. Biol. 19, 972–980. https://doi.org/10.1038/s41589-023-01279-5 (2023).

    Google Scholar 

  40. Wang, Z. et al. Decreasing predictable DNA off-target effects and narrowing editing windows of adenine base editors by fusing human Rad18 protein variant. Int. J. Biol. Macromol. 253, 127418. https://doi.org/10.1016/j.ijbiomac.2023.127418 (2023).

    Google Scholar 

  41. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63. https://doi.org/10.1038/nature26155 (2018).

    Google Scholar 

  42. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485. https://doi.org/10.1038/nature14592 (2015).

    Google Scholar 

  43. Huang, T. P. et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 37, 626–631. https://doi.org/10.1038/s41587-019-0134-y (2019).

    Google Scholar 

  44. Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262. https://doi.org/10.1126/science.aas9129 (2018).

    Google Scholar 

  45. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191. https://doi.org/10.1038/nature14299 (2015).

    Google Scholar 

  46. Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481. https://doi.org/10.1038/s41587-020-0412-8 (2020).

    Google Scholar 

  47. Zhao, L. et al. PAM-flexible genome editing with an engineered chimeric Cas9. Nat. Commun. 14, 6175. https://doi.org/10.1038/s41467-023-41829-y (2023).

    Google Scholar 

  48. Li, J. et al. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Mol. Plant 14, 352–360. https://doi.org/10.1016/j.molp.2020.12.017 (2021).

    Google Scholar 

  49. Villiger, L. et al. In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nat. Biomed. Eng. 5, 179–189. https://doi.org/10.1038/s41551-020-00671-z (2021).

    Google Scholar 

  50. Liu, Z. et al. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat. Commun. 9, 2338. https://doi.org/10.1038/s41467-018-04768-7 (2018).

    Google Scholar 

  51. Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539. https://doi.org/10.1038/nbt.4148 (2018).

    Google Scholar 

  52. Yang, L. et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell 9, 814–819. https://doi.org/10.1007/s13238-018-0568-x (2018).

    Google Scholar 

  53. Fu, J. et al. Human cell based directed evolution of adenine base editors with improved efficiency. Nat. Commun. 12, 5897. https://doi.org/10.1038/s41467-021-26211-0 (2021).

    Google Scholar 

  54. Qian, Y. et al. A new compact adenine base editor generated through deletion of HNH and REC2 domain of SpCas9. BMC Biol. 21, 155. https://doi.org/10.1186/s12915-023-01644-9 (2023).

    Google Scholar 

  55. Zhao, D. et al. Engineered domain-inlaid Nme2Cas9 adenine base editors with increased on-target DNA editing and targeting scope. BMC Biol. 21, 250. https://doi.org/10.1186/s12915-023-01754-4 (2023).

    Google Scholar 

  56. Cornean, A. et al. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. Elife 11, e72124. https://doi.org/10.7554/eLife.72124 (2022).

    Google Scholar 

  57. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628. https://doi.org/10.1038/s41587-020-0414-6 (2020).

    Google Scholar 

  58. Joshi, J., Albers, C., Smole, N., Guo, S. & Smith, S. A. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for modeling cardiac arrhythmias: Strengths, challenges and potential solutions. Front. Physiol. https://doi.org/10.3389/fphys.2024.1475152 (2024).

    Google Scholar 

  59. Cerneckis, J., Cai, H. & Shi, Y. Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications. Signal Transduct. Target. Ther. 9, 112. https://doi.org/10.1038/s41392-024-01809-0 (2024).

    Google Scholar 

  60. Brookhouser, N. et al. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells. BMC Biol. 18, 193. https://doi.org/10.1186/s12915-020-00929-7 (2020).

    Google Scholar 

  61. Rosello, M. et al. Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nat. Commun. 13, 3435. https://doi.org/10.1038/s41467-022-31172-z (2022).

    Google Scholar 

  62. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292. https://doi.org/10.1126/science.aav9973 (2019).

    Google Scholar 

  63. Lee, S.-H. et al. Bystander editing by adenine base editors impairs vision restoration in a mouse model of Leber congenital amaurosis. Mol. Ther. Methods Clin. Dev. https://doi.org/10.1016/j.omtm.2025.101461 (2025).

    Google Scholar 

  64. Tuladhar, R. et al. CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat. Commun. 10, 4056. https://doi.org/10.1038/s41467-019-12028-5 (2019).

    Google Scholar 

  65. Höijer, I. et al. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat. Commun. 13, 627. https://doi.org/10.1038/s41467-022-28244-5 (2022).

    Google Scholar 

  66. Perrotta, R. M. et al. Engineered base editors with reduced bystander editing through directed evolution. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02937-w (2025).

    Google Scholar 

  67. Xiao, Y.-L., Wu, Y. & Tang, W. An adenine base editor variant expands context compatibility. Nat. Biotechnol. 42, 1442–1453. https://doi.org/10.1038/s41587-023-01994-3 (2024).

    Google Scholar 

  68. Qin, W. et al. ABE-ultramax for high-efficiency biallelic adenine base editing in zebrafish. Nat. Commun. 15, 5613. https://doi.org/10.1038/s41467-024-49943-1 (2024).

    Google Scholar 

  69. Zhao, N. et al. Evolved cytidine and adenine base editors with high precision and minimized off-target activity by a continuous directed evolution system in mammalian cells. Nat. Commun. 15, 8140. https://doi.org/10.1038/s41467-024-52483-3 (2024).

    Google Scholar 

  70. Chen, Q. et al. Engineering of peptide-inserted base editors with enhanced accuracy and security. Small 21, 2411583. https://doi.org/10.1002/smll.202411583 (2025).

    Google Scholar 

  71. Liao, J. et al. Sequential amino acid mutagenesis-driven de novo evolution of adenine deaminases enables efficient in vivo base editing in primate. bioRxiv. 2025.2005.2014.653640 (2025). https://doi.org/10.1101/2025.05.14.653640

  72. Silverstein, R. A. et al. Custom CRISPR–Cas9 PAM variants via scalable engineering and machine learning. Nature https://doi.org/10.1038/s41586-025-09021-y (2025).

    Google Scholar 

  73. Fiumara, M. et al. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat. Biotechnol. 42, 877–891. https://doi.org/10.1038/s41587-023-01915-4 (2024).

    Google Scholar 

  74. Peña-Gutiérrez, I., Olalla-Sastre, B., Río, P. & Rodríguez-Madoz, J. R. Beyond precision: Evaluation of off-target clustered regularly interspaced short palindromic repeats/Cas9-mediated genome editing. Cytotherapy 27, 279–286. https://doi.org/10.1016/j.jcyt.2024.10.010 (2025).

    Google Scholar 

  75. Liang, P. et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 67. https://doi.org/10.1038/s41467-018-07988-z (2019).

    Google Scholar 

  76. Kim, D., Kim, D.-e, Lee, G., Cho, S.-I. & Kim, J.-S. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430–435. https://doi.org/10.1038/s41587-019-0050-1 (2019).

    Google Scholar 

  77. Yuan, K. et al. Selict-seq profiles genome-wide off-target effects in adenosine base editing. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaf281 (2025).

    Google Scholar 

  78. Turchiano, G. et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell 28, 1136-1147.e1135. https://doi.org/10.1016/j.stem.2021.02.002 (2021).

    Google Scholar 

  79. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: A decade of progress. Nat. Rev. Drug Discov. 16, 115–130. https://doi.org/10.1038/nrd.2016.245 (2017).

    Google Scholar 

  80. Heinzelmann, E. et al. iPSC-derived and patient-derived organoids: Applications and challenges in scalability and reproducibility as pre-clinical models. Curr. Res. Toxicol. 7, 100197. https://doi.org/10.1016/j.crtox.2024.100197 (2024).

    Google Scholar 

  81. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157. https://doi.org/10.1038/s41586-019-1711-4 (2019).

    Google Scholar 

  82. Alves, C. R. R. et al. Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy. Nat. Biomed. Eng. 8, 118–131. https://doi.org/10.1038/s41551-023-01132-z (2024).

    Google Scholar 

  83. Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635-5652.e5629. https://doi.org/10.1016/j.cell.2021.09.018 (2021).

    Google Scholar 

  84. Medert, R. et al. Efficient single copy integration via homology-directed repair (scHDR) by 5′modification of large DNA donor fragments in mice. Nucleic Acids Res. 51, e14–e14. https://doi.org/10.1093/nar/gkac1150 (2022).

    Google Scholar 

  85. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226. https://doi.org/10.1038/s41587-019-0032-3 (2019).

    Google Scholar 

  86. Doman, J. L., Sousa, A. A., Randolph, P. B., Chen, P. J. & Liu, D. R. Designing and executing prime editing experiments in mammalian cells. Nat. Protoc. 17, 2431–2468. https://doi.org/10.1038/s41596-022-00724-4 (2022).

    Google Scholar 

  87. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).

    Google Scholar 

  88. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016). https://doi.org/10.18637/jss.v035.b01.

    Google Scholar 

  89. Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2022). https://doi.org/10.32614/CRAN.package.ggpubr

  90. Wilke, C. O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. (2024). https://doi.org/10.32614/CRAN.package.cowplot

Download references

Acknowledgements

Sayari Bhunia is a member of HBIGS, the Heidelberg Biosciences International Graduate School. We thank the entire Freichel lab for their constructive feedback on the manuscript. We thank Maren Schneider for help with cloning pEF1α_ABE9-SpRY and XMAS-TREE sgRNAs. We thank the whole team from the Interfakultäre Biomedizinische Forschungseinrichtung (IBF) at Heidelberg University for their expert technical assistance. We thank Angela Wirth for writing the animal proposal. While preparing this work, the authors used AI-assisted technologies (Grammarly and ChatGPT) to improve readability and language. We acknowledge financial support from the Heidelberg University Publikationsfonds for the open-access publication fee.

Funding

Open Access funding enabled and organized by Projekt DEAL. This research was funded by the German Research foundation (DFG) through the Collaborative Research Centres CRC1550 (FKZ 464424253, projects B09 and S01), CRC1328 (335447717, project A21), DFG project FR 1638/5-1 (531047917), the DZHK (German Centre for Cardiovascular Research) and the BMBF (German Ministry of Education and Research); and The Health + Life Science Alliance Heidelberg Mannheim.

Author information

Author notes
  1. Jun Kai Ong

    Present address: Medizinische Klinik II, Uniklinikum Würzburg, 97078, Würzburg, Germany

Authors and Affiliations

  1. Institute of Pharmacology, Heidelberg University, 69120, Heidelberg, Germany

    Jun Kai Ong, Sayari Bhunia, Beate Hilbert, Vanessa Kirschner, Marc Freichel & Alex Cornean

  2. DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, 69120, Heidelberg, Germany

    Sayari Bhunia, Vanessa Kirschner, Marc Freichel & Alex Cornean

  3. Heidelberg Biosciences International Graduate School (HBIGS), 69120, Heidelberg, Germany

    Sayari Bhunia

  4. Interfacultary Biomedical Faculty (IBF), Heidelberg University, 69120, Heidelberg, Germany

    Sascha Duglosz & Frank Zimmermann

Authors
  1. Jun Kai Ong
    View author publications

    Search author on:PubMed Google Scholar

  2. Sayari Bhunia
    View author publications

    Search author on:PubMed Google Scholar

  3. Beate Hilbert
    View author publications

    Search author on:PubMed Google Scholar

  4. Vanessa Kirschner
    View author publications

    Search author on:PubMed Google Scholar

  5. Sascha Duglosz
    View author publications

    Search author on:PubMed Google Scholar

  6. Frank Zimmermann
    View author publications

    Search author on:PubMed Google Scholar

  7. Marc Freichel
    View author publications

    Search author on:PubMed Google Scholar

  8. Alex Cornean
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.K.O. and A.C. designed the study and developed the methodology. J.K.O. and A.C. curated the data and performed the formal analysis. J.K.O., S.B., B.H., V.K., S.D. and F.Z. performed the investigation. J.K.O., S.B. and A.C. conducted validation. J.K.O. and A.C. visualised the data. J.K.O. and A.C. wrote the original draft of the manuscript. J.K.O., S.B., V.K., M.F. and A.C. reviewed and edited the manuscript. M.F. acquired funding and provided resources. A.C. supervised the work.

Corresponding authors

Correspondence to Marc Freichel or Alex Cornean.

Ethics declarations

Competing interests

Alex Cornean is a co-founder and shareholder of DataHarmony Ltd, a company that provides gene editing-related services and software solutions.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, J.K., Bhunia, S., Hilbert, B. et al. ABE9 fused to SpRY Cas9 nickase enables precise generation of bystander free mouse models. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40642-z

Download citation

  • Received: 18 December 2025

  • Accepted: 13 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-40642-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Adenine base editing
  • Precision editing
  • Mouse modelling
  • CRISPR-Cas9
  • hiPS cells
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research