Table 2 Summary of empirical research related to AI environmental effects.

From: Ecological footprints, carbon emissions, and energy transitions: the impact of artificial intelligence (AI)

Author, time

Research period

Research object

Explanatory variable

AI data

Main findings

AI-Carbon emissions nexus

 (Yu et al., 2022)

2010–2018

China City

Robot

IFR

Robots reduce carbon emissions

 (Luan et al., 2022)

1993–2019

74 countries

Robot

IFR

Robots increase air pollution

 (Wang et al., 2023a)

2008–2019

China City

Robot

IFR

Robots reduce carbon emissions

 (Jiang et al., 2022)

2003–2016

Chinese industry

Robot

IFR

Robots reduce manufacturing carbon emissions

 (Song et al., 2023)

2000–2013

41,419 Chinese companies

Robot

IFR

Robots decrease carbon emissions

 (Ding et al., 2023)

2006–2019

30 Chinese provinces

AI

AI index

AI reduces carbon emissions

 (Zhong et al., 2023)

1993–2019

66countries

AI

IFR

AI reduces carbon emissions

AI-Carbon intensity nexus

 (Liu et al., 2022a)

2005–2016

Chinese industry

AI

IFR

AI reduces carbon intensity

 (Zhang et al., 2022)

2008 to 2019

Chinese industry

AI

IFR

AI reduces carbon intensity

 (Li et al., 2022b)

1993 to 2017

35 countries

Robot

IFR

Robots reduce carbon intensity

 (Chen et al., 2022a)

2011 to 2017

China City

Robot

IFR

Robots reduce carbon intensity

AI-Ecological footprint nexus

 (Chen et al., 2022b)

1993 to 2019

72 countries

Robot

IFR

Robots reduce ecological footprint

AI-Energy transition nexus

 (Wang et al., 2024b)

1993 to 2019

69 countries

AI

IFR

AI promotes energy transition