Table 2 . Features and performance of three models.
Model optimal policy | MSL model | NGL model | ASL model |
|---|---|---|---|
Optimal time | \(\frac{\left(1-b\right)\left(h-{\tau }_{0}\right)-\lambda (s{t}_{1}+c)}{\lambda (h-s)}\) | \(\frac{\lambda ({\omega }_{{\rm {l}}}-c-\left({s-\tau }_{0}\right){t}_{1})}{(1-\lambda )({s-\tau }_{0})}\) | \(\frac{{\lambda }^{2}{t}_{1}}{1-\lambda }\) |
Optimal wholesale price | \(\frac{\lambda h\left(c+s{t}_{1}-{\tau }_{0}{t}_{1}\right)+\left(h-{\tau }_{0}\right)\left[{\tau }_{0}\left(1-b\right)+{bs}-h\right]-\lambda c{\tau }_{0}}{\lambda (h-s)}\) | – | – |
Optimal price of PC | \(\frac{{b}^{2}({\tau }_{0}-h)}{\lambda (b-1)}\) | \(\frac{b}{b-1}({\omega }_{{\rm {l}}}+{\tau }_{0}{t}_{1}+\frac{\lambda ({h-\tau }_{0})({\omega }_{{\rm {l}}}-c-\left({s-\tau }_{0}\right){t}_{1})}{(1-\lambda )({s-\tau }_{0})})\) | \(\frac{b}{b-1}({\omega }_{{\rm {l}}}+{\lambda }^{2}h{t}_{1}-s{t}_{1}+\frac{{\omega }_{{\rm {l}}}-c}{1-\lambda })\) |
Optimal amount of crashing cost shared | – | – | \(s-\frac{{\omega }_{\rm {{l}}}-c}{(1-\lambda ){t}_{1}}\) |