Table 3 Social media attention and fund net capital flow.

From: The impact of social media on fund net capital flow and performance

Explained variable: Fund net capital flow (flow)

 

(1)

(2)

(3)

(4)

 

all

large

small

all

large

small

all

large

small

all

large

small

media

0.0525*** (0.0141)

0.0161*** (0.00582)

0.0728** (0.0365)

         

\(L.{media}\)

   

0.0492*** (0.0150)

0.0181*** (0.00518)

0.0499 (0.0320)

      

\({media\_pos}\)

      

0.0103 (0.0120)

0.0174*** (0.00527)

0.00578 (0.0260)

   

\({media\_ntr}\)

      

0.0126 (0.0152)

0.00663 (0.00515)

0.0446 (0.0405)

   

\({media\_neg}\)

      

0.0330** (0.0142)

−0.00615 (0.00515)

0.0394 (0.0287)

   

\(L.{media\_pos}\)

         

0.0233 (0.0149)

0.0236*** (0.00470)

0.0163 (0.0260)

\(L.{media\_ntr}\)

         

0.0311* (0.0169)

0.00708 (0.00506)

0.0429 (0.0312)

\(L.{media\_neg}\)

         

0.00635 (0.0172)

−0.0104* (0.00540)

0.0146 (0.0354)

Observations

20,306

10,528

9778

20,306

10,528

9778

20,306

10,528

9778

20,306

10,528

9778

R-squared

0.076

0.518

0.054

0.076

0.518

0.054

0.076

0.519

0.054

0.076

0.519

0.054

Number of funds

807

542

669

807

542

669

807

542

669

807

542

669

Fund FE

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

Quarter FE

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

  1. The numbers in parentheses are the robust standard errors adjusted for clustering at the fund level. ***, **, and * represent significance at the 1%, 5%, and 10% levels, respectively. Estimation of Eq. (1) including the ordinary return rate of the fund in the previous period (\({{return}}_{i,t-1}\)), the fund age (\({{lnage}}_{i,t}\)), the net asset value of the fund (\(\mathrm{ln}{{tna}}_{i,t}\)), the net asset value of the fund manager (\({{lnfamsize}}_{i,t}\)), volatility of the fund’s ordinary return rate (\({{Stdret}}_{i,t}\)), total dividend amount of the fund (\({{div}}_{i,t}\)), number of fund dividends (\({{divnum}}_{i,t}\)), market return rate (\({{Rm}}_{t}\)).