This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Quality, topics, and demographic trends of animal systematic reviews - an umbrella review
Journal of Translational Medicine Open Access 06 January 2025
-
Large language models to process, analyze, and synthesize biomedical texts: a scoping review
Discover Artificial Intelligence Open Access 19 December 2024
Access options

References
Landhuis, E. Nature 535, 457–458 (2016).
Bastian, H., Glasziou, P. & Chalmers, I. PLoS Med. 7, e1000326 (2010).
Ioannidis, J. P., Chang, C. Q., Lam, T. K., Schully, S. D. & Khoury, M. J. PloS One 8, e65602 (2013).
Ioannidis, J. P. Milbank Q. 94, 485–514 (2016).
Macleod, M. R. et al. Lancet 383, 101–104 (2014).
Bespalov, A. et al. Nat. Rev. Drug Discov. 15, 516 (2016).
Cannon, A. E. et al. Front. Vet. Sci. 10, 1135282 (2023).
Ritskes-Hoitinga, M. & Pound, P. J. R. Soc.Med. 115, 186–192 (2022).
Ioannidis, J. P. Physiol. Rev. 103, 1–5 (2022).
Egger, M., Higgins, J. P. & Smith, G. D. (John Wiley & Sons, 2022).
Wong, C. et al. medRxiv (2022) https://www.medrxiv.org/content/10.1101/2022.04.13.22273823v2
Bahor, Z. et al. BMJ Open Sci. 5, e100103 (2021).
Marshall, I. J. & Wallace, B. C. Syst. Rev. 8, 163 (2019).
Wang, Q., Liao, J., Lapata, M. & Macleod, M. Res. Synth. Methods 13, 368–380 (2022).
Stokel-Walker, C. & Van Noorden, R. Nature 614, 214–216 (2023).
Vollert, J. et al. BMJ Open Sci. 4, e100046 (2020).
Acknowledgements
We thank George Enescu for the help with data analysis. This work was supported by grants of the Swiss National Science Foundation (No. P400PM_183884, to BVI), the UZH Alumni (to BVI), the UZH Digital Entrepreneur Fellowship (to BVI). We thank all our funders for their support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Supplementary information
Supplementary Data
Supplementary data 1
Rights and permissions
About this article
Cite this article
Ineichen, B.V., Rosso, M. & Macleod, M.R. From data deluge to publomics: How AI can transform animal research. Lab Anim 52, 213–214 (2023). https://doi.org/10.1038/s41684-023-01256-4
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41684-023-01256-4
This article is cited by
-
Quality, topics, and demographic trends of animal systematic reviews - an umbrella review
Journal of Translational Medicine (2025)
-
Ethical, robust and accurate use of AI in animal research
Lab Animal (2025)
-
Systematic review and meta-analysis of preclinical studies
Nature Reviews Methods Primers (2024)
-
Large language models to process, analyze, and synthesize biomedical texts: a scoping review
Discover Artificial Intelligence (2024)