Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Precision Oncology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj precision oncology
  3. review
  4. article
AI accelerate the identification of druggable targets by 3D structures of proteins and compounds
Download PDF
Download PDF
  • Review
  • Open access
  • Published: 14 February 2026

AI accelerate the identification of druggable targets by 3D structures of proteins and compounds

  • Da Li1 na1,
  • Sanbao Shi1 na1,
  • Zhiyu Yu1,
  • Peng Xu1 &
  • …
  • Cheng Zhang1 

npj Precision Oncology , Article number:  (2026) Cite this article

  • 1644 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cancer
  • Computational biology and bioinformatics
  • Drug discovery
  • Mathematics and computing

Abstract

Artificial intelligence (AI) is being used in oncological drug development to address the high costs, low success rates, and long timelines that characterize traditional drug development pipelines. The use of machine learning (ML) and deep learning (DL) models in computer-aided drug design is constantly growing owing to their capacity to analyze large, heterogeneous datasets, their ability to capture nonlinear biological trends, and their integration of various molecular and clinical characteristics. AI applications accelerate target discovery by predicting protein structures, ranking disease-relevant genes, and assessing target drugability. AI can be used to conduct rapid searches of multiplexed chemical libraries, predict drug-target interactions, and optimize the pharmacological and physicochemical properties of drugs in virtual screening. Advanced neural network designs also aid in de novo drug design, which involves developing new molecular structures with therapeutic properties of interest. This review outlines how AI has been used for target identification, virtual screening, de novo molecular design, and, specifically, in cancer applications. It further discusses the major issues in AI-based drug development, such as data quality, model interpretation, computational constraints, and ethical and regulatory considerations, which remain essential obstacles to broader clinical translation.

Similar content being viewed by others

Artificial intelligence for natural product drug discovery

Article 11 September 2023

Artificial intelligence in drug development

Article 20 January 2025

Advancing active compound discovery for novel drug targets: insights from AI-driven approaches

Article 17 June 2025

References

  1. Gupta, R. et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers. 25, 1315–1360 (2021).

    Google Scholar 

  2. Tsou, L. K. et al. Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery. Sci. Rep. 10, https://doi.org/10.1038/s41598-020-73681-1 (2020).

  3. Grabowski, H. & Long, G. Post-approval indications and clinical trials for cardiovascular drugs: some implications of the US Inflation Reduction Act. J. Med. Econ. 27, 463–472 (2024).

    Google Scholar 

  4. Barbolosi, D., André, N., Barlési, F., Lacarelle, B. & Ciccolini, J. Computational oncology–mathematical modelling of drug regimens for precision medicine. Nat. Rev. Clin. Oncol. 13, 242–254 (2015).

    Google Scholar 

  5. Bhange, M. & Telange, D. Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review. Discover Oncol. 16, https://doi.org/10.1007/s12672-025-01821-y (2025).

  6. Biankin, A. V., Piantadosi, S. & Hollingsworth, S. J. Patient-centric trials for therapeutic development in precision oncology. Nature 526, 361–370 (2015).

    Google Scholar 

  7. Wang, K., Huang, Y., Wang, Y., You, Q. & Wang, L. Recent advances from computer-aided drug design to artificial intelligence drug design. RSC Med.Chem. 15, 3978–4000 (2024).

    Google Scholar 

  8. Rawat, S. et al. Drug repositioning using computer-aided drug design (CADD. Curr. Pharm. Biotechnol. 25, 301–312 (2024).

    Google Scholar 

  9. Afrose, N., Chakraborty, R., Bhowmick, M., Bhowmick, P. & Hazra, A. AI-driven drug discovery and development. Drug Discov Today. 26, 80–93 (2024).

  10. Lee, J. W., Yoon, S., Maria-Solano, M. A., Choi, S. & Vu, T. N. L. Big data and artificial intelligence (AI) methodologies for computer-aided drug design (CADD. Biochem. Soc. Trans. 50, 241–252 (2022).

    Google Scholar 

  11. Udegbe, F., Ekesiobi, C., Ebulue, C. & Ebulue, O. Machine learning in drug discovery: a critical review of applications and challenges. Comput. Sci. IT Res. J. 5, 892–902 (2024).

    Google Scholar 

  12. Zhang, X. C. et al. MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction. Brief Bioinformatics 22, https://doi.org/10.1093/bib/bbab152 (2021).

  13. Striuk, O. & Kondratenko, Y. Generative adversarial neural networks and deep learning: successful cases and advanced approaches. Int. J. Comput 20, 339–349 (2021).

    Google Scholar 

  14. Singh, A., Eising, C., Ven, P. & Denny, P. Dynamic filter application in graph convolutional networks for enhanced spectral feature analysis and class discrimination in medical imaging. IEEE Access 12, 113259–113274 (2024).

    Google Scholar 

  15. Cheung, M. & Moura, J. M. F. Graph Neural Networks for COVID-19 Drug Discovery. In Proc. IEEE International Conference on Big Data (Big Data) 5646–5648 (IEEE, 2020).

  16. Hanassab, S. et al. The prospect of artificial intelligence to personalize assisted reproductive technology. npj Digit. Med. 7, 55 (2024).

    Google Scholar 

  17. Liu, X., Xue, Z., Luo, M., Ke, B. & Lv, J. Anesthetic drug discovery with computer-aided drug design and machine learning. Anesthesiol. Perioper. Sci. 2, https://doi.org/10.1007/s44254-023-00047-x (2024).

  18. Wong, C. F. & McCammon, J. A. Protein flexibility and computer-aided drug design. Annu. Rev. Pharmacol. Toxicol. 43, 31–45 (2002).

    Google Scholar 

  19. Pasrija, P., Jha, P., Chopra, M., Upadhyaya, P. & Khan, M. S. Machine learning and artificial intelligence: a paradigm shift in big data-driven drug design and discovery. Curr. Top. Med. Chem. 22, 1692–1727 (2022).

    Google Scholar 

  20. Nayarisseri, A. et al. Artificial Intelligence. Big data and machine learning approaches in precision medicine & drug discovery. Curr. Drug Targets 22, 631–655 (2021).

    Google Scholar 

  21. Cesaro, A., Bagheri, M., Torres, M., Wan, F. & Fuente-Nunez, C. Deep learning tools to accelerate antibiotic discovery. Expert Opin Drug Discov. 18, 1245–1257 (2023).

  22. Nguyen, A. T. N. et al. The application of artificial intelligence to accelerate G protein-coupled receptor drug discovery. Br. J. Pharmacol. 181, 2371–2384 (2023).

    Google Scholar 

  23. Mouchlis, V. D. et al. Advances in de novo drug design: from conventional to machine learning methods. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22041676 (2021).

  24. Lin, E., Lin, C. H. & Lane, H. Y. De novo peptide and protein design using generative adversarial networks: an update. J. Chem. Inf. Model. 62, 761–774 (2022).

    Google Scholar 

  25. Fu, C. & Chen, Q. The future of pharmaceuticals: artificial intelligence in drug discovery and development. J. Pharm. Anal. 15, 101248. https://doi.org/10.1016/j.jpha.2025.101248 (2025).

    Google Scholar 

  26. Kant, S., Deepika, D. & Roy, S. Artificial intelligence in drug discovery and development: transforming challenges into opportunities. Discov. Pharm. Sci. 1, https://doi.org/10.1007/s44395-025-00007-3 (2025).

  27. Ocana, A. et al. Integrating artificial intelligence in drug discovery and early drug development: a transformative approach. Biomarker Res. 13, https://doi.org/10.1186/s40364-025-00758-2 (2025).

  28. Pammolli, F. et al. The endless frontier? The recent increase of R&D productivity in pharmaceuticals. J. Translat. Med. 18, https://doi.org/10.1186/s12967-020-02313-z (2020).

  29. Dhudum, R., Pawar, A. & Ganeshpurkar, A. Revolutionizing drug discovery: a comprehensive review of AI applications. Drugs Drug Candidates 3, 148–171 (2024).

    Google Scholar 

  30. Shaki, F., Jahani, D., Amilrkhanloo, M. & Chahrdori, M. Artificial intelligence in pharmaceuticals: exploring applications and legal challenges. Pharm. Biomed. Res. 10, 1–10 (2024).

    Google Scholar 

  31. Mukaidaisi, M., Grantham, K., Vu, A., Li, Y. & Tchagang, A. Multi-objective drug design based on graph-fragment molecular representation and deep evolutionary learning. Front. Pharmacol. 13, https://doi.org/10.3389/fphar.2022.920747 (2022).

  32. Khan, M. K. et al. The recent advances in the approach of artificial intelligence (AI) towards drug discovery. Front. Chem. 12, https://doi.org/10.3389/fchem.2024.1408740 (2024).

  33. Li, K., Du, Y., Li, L. & Wei, D. Q. Bioinformatics approaches for anti-cancer drug discovery. Curr. Drug Targets 21, 3–17 (2019).

    Google Scholar 

  34. Doherty, G. J. et al. Cancer treatment in the genomic era. Annu. Rev. Biochem. 88, 247–280 (2019).

    Google Scholar 

  35. Kumar, B., Singh, S., Kumar, V. & Skvortsova, I. Promising targets in anti-cancer drug development: recent updates. Curr. Med. Chem. 24, https://doi.org/10.2174/0929867324666170331123648 (2018).

  36. Garg, P. et al. Artificial intelligence–driven computational approaches in the development of anticancer drugs. Cancers 16, 3884 (2024).

    Google Scholar 

  37. Hachem, S. et al. Contemporary update on clinical and experimental prostate cancer biomarkers: a multi-omics-focused approach to detection and risk stratification. Biology 13, https://doi.org/10.3390/biology13100762 (2024).

  38. Arya, K. R. et al. Multitarget-directed multiple ligands in anti-VEGF resistant glioblastoma therapeutics. https://doi.org/10.47852/bonviewMEDIN52023816 (2025).

  39. Akbani, R. et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat. Commun. 5, https://doi.org/10.1038/ncomms4887 (2014).

  40. Mottaghi-Dastjerdi, N. & Soltany-Rezaee-Rad, M. Advancements and applications of artificial intelligence in pharmaceutical sciences: a comprehensive review. Iran. J. Pharm. Res. IJPR 23, https://doi.org/10.5812/ijpr-150510 (2024).

  41. Kamya, P. et al. PandaOmics: an AI-driven platform for therapeutic target and biomarker discovery. J. Chem. Inf. Model. 64, 3961–3969 (2024).

    Google Scholar 

  42. Raufaste-Cazavieille, V., Droit, A. & Santiago, R. Multi-omics analysis: paving the path toward achieving precision medicine in cancer treatment and immuno-oncology. Front. Mol. Biosci. 9, https://doi.org/10.3389/fmolb.2022.962743 (2022).

  43. Kamya, P. et al. PandaOmics: an AI-driven platform for therapeutictarget and biomarker discovery. J. Chem. Inf. Model. 64, 3961–3969 (2024).

    Google Scholar 

  44. Ivanenkov, Y. A. et al. Chemistry42: an AI-driven platform for molecular design and optimization. J. Chem. Inf. Model. 63, 695–701 (2023).

    Google Scholar 

  45. Patel, M. N., Halling-Brown, M. D., Al-Lazikani, B., Tym, J. E. & Workman, P. Objective assessment of cancer genes for drug discovery. Nat. Rev. Drug Discov. 12, 35–50 (2012).

    Google Scholar 

  46. Migliozzi, S. et al. Integrative multi-omics networks identify PKCδ and DNA-PK as master kinases of glioblastoma subtypes and guide targeted cancer therapy. Nat. Cancer 4, 181–202 (2023).

    Google Scholar 

  47. Tang, X. et al. A survey of generative AI for de novo drug design: new frontiers in molecule and protein generation. Briefings Bioinformatics 25, https://doi.org/10.1093/bib/bbae338 (2024).

  48. Bilal, H. et al. An intelligent approach for early and accurate predication of cardiac disease using hybrid artificial intelligence techniques. https://doi.org/10.3390/bioengineering11121290 (2024).

  49. Karimi, M., Wang, Z., Shen, Y. & Wu, D. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35, 3329–3338 (2019).

    Google Scholar 

  50. Lilhore, U. K. et al. ProtienCNN-BLSTM: an efficient deep neural network with amino acid embedding-based model of protein sequence classification and biological analysis. Comput. Intelligence 40, https://doi.org/10.1111/coin.12696 (2024).

  51. Bull, S. C. & Doig, A. J. Properties of protein drug target classes. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0117955 (2015).

  52. Haider, S., Ghosh, S., Pal, R. & Rahman, R. A copula based approach for design of multivariate random forests for drug sensitivity prediction. PLOS ONE 10, 0144490 (2015).

    Google Scholar 

  53. Akter, S. AI-driven precision medicine: transforming personalized cancer treatment. J. AI Power. Med. Innov. 2, 10–21 (2024).

    Google Scholar 

  54. Masso, M. & Vaisman, I. I. AUTO-MUTE 2.0: a portable framework with enhanced capabilities for predicting protein functional consequences upon mutation. Adv. Bioinformatics 2014, 1–7 (2014).

    Google Scholar 

  55. Zhai, D. et al. Small-molecule targeting AMPA-mediated excitotoxicity has therapeutic effects in mouse models for multiple sclerosis. Sci. Adv. 9, https://doi.org/10.1126/sciadv.adj6187 (2023).

  56. Song, K. et al. AlloDriver: a method for the identification and analysis of cancer driver targets. Nucleic Acids Res. 47, 315–321 (2019).

    Google Scholar 

  57. Larochelle, J. R. et al. Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition. Nat. Commun. 9, https://doi.org/10.1038/s41467-018-06823-9 (2018).

  58. Deng, X., Das, S., Valdez, K., Camphausen, K. & Shankavaram, U. SL-BioDP: Multi-cancer interactive tool for prediction of synthetic lethality and response to cancer treatment. Cancers 11, https://doi.org/10.3390/cancers11111682 (2019).

  59. Das, S., Shankavaram, U., Deng, X. & Camphausen, K. DiscoverSL: an R package for multi-omic data driven prediction of synthetic lethality in cancers. Bioinformatics 35, 701–702 (2018).

    Google Scholar 

  60. Benfatto, S. et al. Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality. Mol. Cancer 20, https://doi.org/10.1186/s12943-021-01405-8 (2021).

  61. Huang, J., Lu, F., Wu, M., Ou-Yang, L. & Zhu, Z. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization. BMC Bioinformatics 20, https://doi.org/10.1186/s12859-019-3197-3 (2019).

  62. Wang, Z. et al. BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation. Brief. Bioinformatics 25, https://doi.org/10.1093/bib/bbad400 (2023).

  63. Savage, S. R. et al. Pan-cancer proteogenomics expands the landscape of therapeutic targets. Cell 187, 4389–4407 4315 (2024).

    Google Scholar 

  64. Kokudeva, M., Vichev, M., Naseva, E., Miteva, D. G. & Velikova, T. Artificial intelligence as a tool in drug discovery and development. World J. Exp. Med. 14, https://doi.org/10.5493/wjem.v14.i3.96042 (2024).

  65. Nelen, J. et al. ESSENCE-Dock: a consensus-based approach to enhance virtual screening enrichment in drug discovery. J. Chem. Inf. Model. 64, 1605–1614 (2024).

    Google Scholar 

  66. Bielska, E. et al. REVIEW PAPER: Virtual screening strategies in drug design – methods and applications. BioTechnologia 92, 249–264 (2011).

    Google Scholar 

  67. Polgar, T. & Keseru, M. Integration of virtual and high throughput screening in lead discovery settings. Combinat. Chem. High. Throughput Screen. 14, 889–897 (2011). & G.

    Google Scholar 

  68. Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1, 882–894 (2002).

    Google Scholar 

  69. Grotsch, K. et al. Virtual screening of a chemically diverse “Superscaffold. Library Enables Ligand Discovery for a Key GPCR Target. ACS Chem. Biol. 19, 866–874 (2024).

    Google Scholar 

  70. Yang, Y. et al. D3AI-CoV: a deep learning platform for predicting drug targets and for virtual screening against COVID-19. Brief. Bioinformatics 23, https://doi.org/10.1093/bib/bbac147 (2022).

  71. Cournia, Z. et al. Rigorous free energy simulations in virtual screening. J. Chem. Inf. Model. 60, 4153–4169 (2020).

    Google Scholar 

  72. Nascimento, L. D. et al. Applications of virtual screening in bioprospecting: facts, shifts, and perspectives to explore the chemo-structural diversity of natural products. Front. Chem. 9, https://doi.org/10.3389/fchem.2021.662688 (2021).

  73. Ebalunode, J. O., Liang, J., Ouyang, Z. & Zheng, W. Novel approach to structure-based pharmacophore search using computational geometry and shape matching techniques. J. Chem. Inf. Model. 48, 889–901 (2008).

    Google Scholar 

  74. Niinivehmas, S. P., Manivannan, E., Rauhamäki, S., Huuskonen, J. & Pentikäinen, O. T. Identification of estrogen receptor α ligands with virtual screening techniques. J. Mol. Graph. Model. 64, 30–39 (2016).

    Google Scholar 

  75. Rudrapal, M. & Chetia, D. Virtual screening, molecular docking and QSAR studies in drug discovery and development programme. J. Drug Deliv. Ther. 10, 225–233 (2020).

    Google Scholar 

  76. Potlitz, F., Link, A. & Schulig, L. Advances in the discovery of new chemotypes through ultra-large library docking. Expert Opin. Drug Discov. 18, 303–313 (2023).

    Google Scholar 

  77. Jiang, P. et al. Molecular persistent spectral image (Mol-PSI) representation for machine learning models in drug design. Brief. Bioinformatics 23, https://doi.org/10.1093/bib/bbab527 (2021).

  78. Kuan, J., Cherkasov, A., Avenido, A., Gentile, F. & Radaeva, M. Keeping pace with the explosive growth of chemical libraries with structure-based virtual screening. WIREs Comput. Mol. Sci. 13, https://doi.org/10.1002/wcms.1678 (2023).

  79. Wang, S. et al. MSGNN-DTA: multi-scale topological feature fusion based on graph neural networks for drug-target binding affinity prediction. Int. J. Mol. Sci. 24, 8326 (2023).

    Google Scholar 

  80. Isert, C., Atz, K., Riniker, S. & Schneider, G. Exploring protein-ligand binding affinity prediction with electron density-based geometric deep learning. RSC Adv. 14, 4492–4502 (2024).

    Google Scholar 

  81. Zhou, G. et al. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat. Commun. 15, https://doi.org/10.1038/s41467-024-52061-7 (2024).

  82. Meli, R., Morris, G. M. & Biggin, P. C. Scoring functions for protein-ligand binding affinity prediction using structure-based deep learning. Rev. Front. Bioinformatics 2, https://doi.org/10.3389/fbinf.2022.885983 (2022).

  83. Bekker, G. J., Kamiya, N., Fukuda, I., Fukunishi, Y. & Higo, J. Cryptic-site binding mechanism of medium-sized Bcl-xL inhibiting compounds elucidated by McMD-based dynamic docking simulations. Sci. Rep. 11, https://doi.org/10.1038/s41598-021-84488-z (2021).

  84. Vidal-Limon, A., Aguilar-Toalá, J. E. & Liceaga, A. M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem. 70, 934–943 (2022).

    Google Scholar 

  85. Beglov, D. et al. Exploring the structural origins of cryptic sites on proteins. Proc. Natl. Acad. Sci. USA 115, https://doi.org/10.1073/pnas.1711490115 (2018).

  86. Naqvi, A. A. T., Hassan, M. I., Mohammad, T. & Hasan, G. M. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 18, 1755–1768 (2018).

    Google Scholar 

  87. Gu, S. et al. Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning? Brief. Bioinformatics 24, https://doi.org/10.1093/bib/bbad008 (2023).

  88. Bentham Science Publisher, B. S. P. Docking and scoring - theoretically easy, practically impossible? Curr. Med.Chem. 13, 2995–3003 (2006).

    Google Scholar 

  89. Díaz-Holguín, A. et al. AlphaFold accelerated discovery of psychotropic agonists targeting the trace amine-associated receptor 1. Sci. Adv. 10, https://doi.org/10.1126/sciadv.adn1524 (2024).

  90. Glukhov, E. et al. Phospho-Tune: Enhanced Structural Modeling of Phosphorylated Protein Interactions (Cold Spring Harbour Laboratory, 2024).

  91. Liu, J., Neupane, P. & Cheng, J. in and AlphaFold3-Based Protein Complex Structure Prediction With MULTICOM4 in CASP16. Proteins (2025).

  92. Krokidis, M. G. et al. AlphaFold3: an overview of applications and performance insights. Int. J. Mol. Sci. 26, 3671 (2025).

    Google Scholar 

  93. Gheidari, D., Mehrdad, M. & Bayat, M. Synthesis, docking, MD simulation, ADMET, drug likeness, and DFT studies of novel furo[2,3-b]indol-3a-ol as promising Cyclin-dependent kinase 2 inhibitors. Sci. Rep. 14, https://doi.org/10.1038/s41598-024-53514-1 (2024).

  94. Kaveh, S., Mani-Varnosfaderani, A. & Neiband, M. S. Deriving general structure–activity/selectivity relationship patterns for different subfamilies of cyclin-dependent kinase inhibitors using machine learning methods. Sci. Rep. 14, https://doi.org/10.1038/s41598-024-66173-z (2024).

  95. Sheik Amamuddy, O. et al. Integrated computational approaches and tools forallosteric drug discovery. Int. J. Mol. Sci. 21, 847 (2020).

    Google Scholar 

  96. Aderinwale, T. et al. Real-time structure search and structure classification for AlphaFold protein models. Commun. Biol. 5, https://doi.org/10.1038/s42003-022-03261-8 (2022).

  97. Wu, N., Strömich, L. & Yaliraki, S. N. Prediction of allosteric sites and signaling: insights from benchmarking datasets. Patterns 3, 100408 (2021).

  98. Ruiz-Carmona, S. et al. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat. Chem. 9, 201–206 (2016).

    Google Scholar 

  99. Sun, H. & Scott, D. O. Structure-based drug metabolism predictions for drug design. Chem. Biol. Drug Des. 75, 3–17 (2009).

    Google Scholar 

  100. Chen, L. et al. From laptop to benchtop to bedside: structure-based drug design on protein targets. Curr. Pharm. Des. 18, 1217–1239 (2012).

    Google Scholar 

  101. Ivanova, L. & Karelson, M. The impact of software used and the type of target protein on molecular docking accuracy. Molecules 27, 9041 (2022).

    Google Scholar 

  102. Pinzi, L. & Rastelli, G. Molecular docking: shifting paradigms in drug discovery. Int. J. Mol. Sci. 20, 4331 (2019).

    Google Scholar 

  103. Aboalroub, A. A. Virtual screening and molecular docking characterization of isoxazole-based small molecules as potential Hsp90 inhibitors: an in silico insight. Medinformatics 2, 154–166 (2025).

    Google Scholar 

  104. Luttens, A. et al. Rapid traversal of vast chemical space using machine learning-guided docking screens. Nat. Comput. Sci. 5, 301–312 (2025).

    Google Scholar 

  105. Pason, L. P. & Sotriffer, C. A. Empirical scoring functions for affinity prediction of protein-ligand complexes. Mol. Inform. 35, 541–548 (2016).

    Google Scholar 

  106. Morrone, J. A., Luo, H., Huynh, T., Weber, J. K. & Cornell, W. D. Combining docking pose rank and structure with deep learning improves protein-ligand binding mode prediction over a baseline docking approach. J. Chem. Inf. Model. 60, 4170–4179 (2020).

    Google Scholar 

  107. Lee, C. et al. GalaxyDock-DL: protein-ligand docking by global optimization and neural network energy. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.4c00385 (2024).

  108. Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem. Sci. 15, 3130–3139 (2024).

    Google Scholar 

  109. Ghersi, D. & Sanchez, R. Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites. Proteins 74, 417–424 (2008).

    Google Scholar 

  110. Arcon, J. P. et al. Molecular dynamics in mixed solvents reveals protein-ligand interactions, improves docking, and allows accurate binding free energy predictions. J. Chem. Inf. Model. 57, 846–863 (2017).

    Google Scholar 

  111. Kuzmanic, A., Bowman, G. R., Michel, J., Juarez-Jimenez, J. & Gervasio, F. L. Investigating cryptic binding sites by molecular dynamics simulations. Acc. Chem. Res. 53, 654–661 (2020).

    Google Scholar 

  112. Ge, Y., Pande, V., Seierstad, M. J. & Damm-Ganamet, K. L. Exploring the application of sitemap and site finder for focused cryptic pocket identification. J. Phys. Chem. B 128, 6233–6245 (2024).

    Google Scholar 

  113. Sabanés Zariquiey, F., Souza, J. V. & Bronowska, A. K. Cosolvent Analysis Toolkit (CAT): a robust hotspot identification platform for cosolvent simulations of proteins to expand the druggable proteome. Sci. Rep. 9, https://doi.org/10.1038/s41598-019-55394-2 (2019).

  114. Kashyap, A., Singh, P. K. & Silakari, O. Counting on fragment based drug design approach for drug discovery. Curr. Top. Med. Chem. 18, 2284–2293 (2019).

    Google Scholar 

  115. Czub, N. et al. Artificial intelligence-based quantitative structure-property relationship model for predicting human intestinal absorption of compounds with serotonergic activity. Mol. Pharmaceutics 20, 2545–2555 (2023).

    Google Scholar 

  116. Qin, T., Zhu, Z., Wang, X. S., Xia, J. & Wu, S. Computational representations of protein–ligand interfaces for structure-based virtual screening. Expert Opin. Drug Discov. 16, 1175–1192 (2021).

    Google Scholar 

  117. Muhammed, M. T. & Aki-Yalcin, E. Pharmacophore modeling in drug discovery: methodology and current status. J. Turkish Chem. Soc. Sect. A Chem. 8, 749–762 (2021).

    Google Scholar 

  118. Akingbade, T. V. et al. In silico design of novel Artocarpus altilis-derived compounds targeting the c-Myc/Max heterodimer. Medinformatics 2, 181–194 (2025).

    Google Scholar 

  119. Fassio, A. V. et al. Prioritizing virtual screening with interpretable interaction fingerprints. J. Chem. Inf. Model. 62, 4300–4318 (2022).

    Google Scholar 

  120. Jiang, X., Tan, L. & Zou, Q. DGCL: dual-graph neural networks contrastive learning for molecular property prediction. Brief. Bioinformatics 25, https://doi.org/10.1093/bib/bbae474 (2024).

  121. Menke, J. & Koch, O. Using domain-specific fingerprints generated through neural networks to enhance ligand-based virtual screening. J. Chem. Inf. Model. 61, 664–675 (2021).

    Google Scholar 

  122. Bathini, R., Fatima, S., Manga, V. & Sivan, S. K. Molecular docking, MM/GBSA and 3D-QSAR studies on EGFR inhibitors. J. Chem. Sci. 128, 1163–1173 (2016).

    Google Scholar 

  123. Pérez-Nueno, V. I., Ritchie, D. W., Pettersson, S., Borrell, J. I. & Teixidó, J. Discovery of novel HIV entry inhibitors for the CXCR4 receptor by prospective virtual screening. J. Chem. Inf. Model. 49, 810–823 (2009).

    Google Scholar 

  124. Liu, J. et al. Combined pharmacophore modeling, 3D-QSAR and docking studies to identify novel HDAC inhibitors using drug repurposing. J. Biomol. Struct. Dyn. 38, 533–547 (2019).

    Google Scholar 

  125. Keyvanpour, M. R. & Shirzad, M. B. An analysis of QSAR research based on machine learning concepts. Curr. Drug Discov. Technol. 18, 17–30 (2020).

    Google Scholar 

  126. Babajide Mustapha, I. & Saeed, F. Bioactive molecule prediction using extreme gradient boosting. Molecules 21, 983 (2016).

    Google Scholar 

  127. Ghaleb, A., Aouidate, A., Bouachrine, M., Lakhlifi, T. & Sbai, A. In silico exploration of Aryl halides analogues as checkpoint kinase 1 inhibitors by using 3D QSAR, molecular docking study, and ADMET screening. Adv. Pharm. Bull. 9, 84–92 (2019).

    Google Scholar 

  128. Halder, A. K. & Cordeiro, M. N. D. S. AKT inhibitors: the road ahead to computational modeling-guided discovery. Int. J. Mol. Sci. 22, 3944 (2021).

    Google Scholar 

  129. Xiong, G. et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 49, 5–14 (2021).

    Google Scholar 

  130. Sá, A. G. C., Ascher, D. B. & Myung, Y. Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res. 52, 469–475 (2024).

    Google Scholar 

  131. Gangwal, A. et al. Generative artificial intelligence in drug discovery: basic framework, recent advances, challenges, and opportunities. Fron. Pharmacol. 15, https://doi.org/10.3389/fphar.2024.1331062 (2024).

  132. Gupta, A. et al. Generative recurrent networks for de novo drug design. Mol. Inform. 37, 1700111 (2017).

  133. Moret, M., Grisoni, F., Friedrich, L., Merk, D. & Schneider, G. Generative molecular design in low data regimes. Nat. Mach. Intell. 2, 171–180 (2020).

    Google Scholar 

  134. Loving, K., Alberts, I. & Sherman, W. Computational approaches for fragment-based and de novo design. Curr. Top. Med. Chem. 10, 14–32 (2010).

    Google Scholar 

  135. Gummesson Svensson, H., Tyrchan, C., Engkvist, O. & Haghir Chehreghani, M. Utilizing reinforcement learning for de novo drug design. Mach. Learn. 113, 4811–4843 (2024).

    Google Scholar 

  136. Sousa, T., Correia, J., Pereira, V. & Rocha, M. Generative deep learning for targeted compound design. J. Chem. Inf. Model. 61, 5343–5361 (2021).

    Google Scholar 

  137. Kotsias, P. C. et al. Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks. Nat. Mach. Intell. 2, 254–265 (2020).

    Google Scholar 

  138. Lavecchia, A. Navigating the frontier of drug-like chemical space with cutting-edge generative AI models. Drug Discovery Today 29, 104133 (2024).

  139. Hong, S. H., Ryu, S., Lim, J. & Kim, W. Y. Molecular generative model based on an adversarially regularized autoencoder. J. Chem. Inf. Model. 60, 29–36 (2019).

    Google Scholar 

  140. Monti, M., Fiorentino, J., Gosti, G., Tartaglia, G. G. & Milanetti, E. Prediction of time series gene expression and structural analysis of gene regulatory networks using recurrent neural networks. Entropy 24, 141 (2022).

    Google Scholar 

  141. Mienye, I. D., Swart, T. G. & Obaido, G. Recurrent neural networks: a comprehensive review of architectures, variants, and applications. Information 15, 517 (2024).

    Google Scholar 

  142. Zheng, S. et al. Deep scaffold hopping with multimodal transformer neural networks. J. Cheminformatics 13, https://doi.org/10.1186/s13321-021-00565-5 (2021).

  143. Bian, Y. & Xie, X. Q. Generative chemistry: drug discovery with deep learning generative models. J. Mol. Model. 27, https://doi.org/10.1007/s00894-021-04674-8 (2021).

  144. Zhao, L., Wang, J., Pang, L., Liu, Y. & Zhang, J. GANsDTA: predicting drug-target binding affinity using GANs. Front. Genet. 10, https://doi.org/10.3389/fgene.2019.01243 (2020).

  145. Baammi, S., El Allali, A. & Daoud, R. Potent VEGFR-2 inhibitors for resistant breast cancer: a comprehensive 3D-QSAR, ADMET, molecular docking and MMPBSA calculation on triazolopyrazine derivatives. Front. Mol. Biosci. 10, https://doi.org/10.3389/fmolb.2023.1288652 (2023).

  146. Guo, J. et al. DockStream: a docking wrapper to enhance de novo molecular design. J. Cheminformatics 13, https://doi.org/10.1186/s13321-021-00563-7 (2021).

  147. Abate, C., Cavalli, A. & Decherchi, S. Graph neural networks for conditional de novo drug design. WIREs Comput. Mol. Sci. 13, https://doi.org/10.1002/wcms.1651 (2023).

  148. Born, J. et al in Designing Anticancer Drugs From Transcriptomic Data via Reinforcement Learning 231–233 (Springer, 2020).

  149. Huang, D., Yang, C., Li, Z., Li, N. & Jiang, T. Artificial intelligence in lung cancer: current applications, future perspectives, and challenges. Front. Oncol. 14, https://doi.org/10.3389/fonc.2024.1486310 (2024).

  150. Noorain, N., Parveen, R., Parveen, B. & Srivastava, V. Artificial intelligence in drug formulation and development: applications and future prospects. Curr. Drug Metab. 24, 622–634 (2023).

    Google Scholar 

  151. Hasselgren, C. & Oprea, T. I. Artificial intelligence for drug discovery: are we there yet? Annu. Rev. Pharmacol. Toxicol. 64, 527–550 (2023).

    Google Scholar 

  152. Larsson, P. et al. Optimization of cell viability assays to improve replicability and reproducibility of cancer drug sensitivity screens. Sci. Rep. 10, https://doi.org/10.1038/s41598-020-62848-5 (2020).

  153. Schaduangrat, N. et al. Towards reproducible computational drug discovery. J. Cheminformatics 12, https://doi.org/10.1186/s13321-020-0408-x (2020).

  154. Han, D., Huong, P. & Cheng, S. Enhancing semantic segmentation through reinforced active learning: combating dataset imbalances and bolstering annotation efficiency. J. Electron. Inf. Syst. 5, 45–60 (2023).

    Google Scholar 

  155. Karim, M. R. et al. Explainable AI for Bioinformatics: methods, tools and applications. Brief. Bioinformatics 24, https://doi.org/10.1093/bib/bbad236 (2023).

  156. Singh, D. S., Pratap Singh, D. D. & Chandra, M. K. Enhancing transparency and interpretability in deep learning models: a comprehensive study on explainable AI techniques. Int. J. Sci. Res. Eng. Manag. 08, 1–13 (2024).

    Google Scholar 

  157. Alkhanbouli, R., Matar Abdulla Almadhaani, H., Alhosani, F. & Simsekler, M. C. E. The role of explainable artificial intelligence in disease prediction: a systematic literature review and future research directions. BMC Med. Inform. Decision Making 25, https://doi.org/10.1186/s12911-025-02944-6 (2025).

  158. Başağaoğlu, H. et al. A review on interpretable and explainable artificial intelligence in hydroclimatic applications. Water 14, https://doi.org/10.3390/w14081230 (2022).

  159. Korade, D. Unlocking machine learning model decisions: a comparative analysis of LIME and SHAP for enhanced interpretability. J. Electr. Syst. 20, 598–613 (2024).

    Google Scholar 

  160. Thalpage, N. Unlocking the black box: explainable artificial intelligence (XAI) for trust and transparency in AI systems. J. Digit. Art. Human. 4, 31–36 (2023).

    Google Scholar 

  161. Anang, A. et al. Explainable AI in financial technologies: balancing innovation with regulatory compliance. Int. J. Sci. Res. Arch. 13, 1793–1806 (2024).

    Google Scholar 

  162. Metta, C., Giannotti, F., Rinzivillo, S., Beretta, A. & Pellungrini, R. Towards transparent healthcare: advancing local explanation methods in explainable artificial intelligence. Bioengineering 11, 369 (2024).

    Google Scholar 

  163. Alizadehsani, R. et al. Explainable artificial intelligence for drug discovery and development: a comprehensive survey. IEEE Access 12, 35796–35812 (2024).

    Google Scholar 

  164. Kırboğa, K. K., Abbasi, S. & Küçüksille, E. U. Explainability and white box in drug discovery. Chem. Biol. Drug Des. 102, 217–233 (2023).

    Google Scholar 

  165. Jiang, Y. et al. Pharmacophoric-constrained heterogeneous graph transformer model for molecular property prediction. Commun. Chem. 6, https://doi.org/10.1038/s42004-023-00857-x (2023).

  166. Yang, Z., Zhong, W., Zhao, L. & Yu-Chian Chen, C. MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity prediction. Chem. Sci. 13, 816–833 (2022).

    Google Scholar 

  167. Li, S. et al. Structure-aware interactive graph neural networks for the prediction of protein-ligand binding affinity. 975–985 (2021).

  168. Singhal, S. Data privacy, compliance, and security including AI ML. Healthcare 111–126 (2024).

  169. Koo, T. H., Zakaria, A. D., Ng, J. K. & Leong, X. B. Systematic review of the application of artificial intelligence in healthcare and nursing care. Malays. J. Med. Sci. MJMS 31, 135–142 (2024).

    Google Scholar 

  170. Kalra, B., Khirasaria, R. & Batta, A. Trends in FDA drug approvals over last 2 decades: An observational study. J. Fam. Med. Prim. Care 9, 105 (2020).

    Google Scholar 

  171. Vora, L. K. et al. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 15, https://doi.org/10.3390/pharmaceutics15071916 (2023).

  172. O’Connor, L. M., O’Connor, B. A., Lim, S. B., Zeng, J. & Lo, C. H. Integrative multi-omics and systems bioinformatics in translational neuroscience: a data mining perspective. J. Pharm. Anal. 13, 836–850 (2023).

    Google Scholar 

  173. Alghushairy, O. et al. Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting. J. Biomol. Struct. Dyn. 42, 12330–12341 (2023).

    Google Scholar 

  174. Haza, K. Z. et al. RAS-inhibiting biologics identify and probe druggable pockets, including an SII- u03b13 allosteric site. Nat. Commun. 12, https://doi.org/10.1038/s41467-021-24316-0 (2021).

  175. Meng, L., Ye, Z., Yang, Y. & Zhao, H. DeepMCGCN: multi-channel deep graph neural networks. Int. J. Comput. Intell. Syst. 17, https://doi.org/10.1007/s44196-024-00432-9 (2024).

  176. Bhalla, S. & Laganà, A. Artificial intelligence for precision oncology. Adv. Exp. Med. Biol. 1361, 249–268 (2022).

    Google Scholar 

  177. Eckhart, L., Lenhof, K., Rolli, L. M. & Lenhof, H. P. A comprehensive benchmarking of machine learning algorithms and dimensionality reduction methods for drug sensitivity prediction. Brief. Bioinformatics 25, https://doi.org/10.1093/bib/bbae242 (2024).

  178. McDonagh, E. M. et al. Human genetics and genomics for drug target identification and prioritization: open targets’ perspective. Annu. Rev. Biomed. Data Sci. 7, 59–81 (2024).

    Google Scholar 

  179. Kim, M., Oh, I. & Ahn, J. An improved method for prediction of cancer prognosis by network learning. Genes 9, 478 (2018).

    Google Scholar 

  180. Dezső, Z. & Ceccarelli, M. Machine learning prediction of oncology drug targets based on protein and network properties. BMC Bioinformatics 21, https://doi.org/10.1186/s12859-020-3442-9 (2020).

  181. Raies, A. et al. DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets. Commun. Biol. 5, https://doi.org/10.1038/s42003-022-04245-4 (2022).

  182. Nussinov, R., Jang, H. & Tsai, C. Autoinhibition can identify rare driver mutations and advise pharmacology. FASEB J. 34, 16–29 (2019).

    Google Scholar 

  183. Song, Q. et al. DeepAlloDriver: a deep learning-based strategy to predict cancer driver mutations. Nucleic Acids Res. 51, 129–133 (2023).

    Google Scholar 

  184. Park, N., Dong, X. L., Kan, A., Zhao, T. & Faloutsos, C. Estimating Node Importance In Knowledge Graphs Using Graph Neural Networks 596–606 (Association for Computing Machinery, 2019).

  185. Li, P. et al. Improving drug response prediction via integrating gene relationships with deep learning. Brief. Bioinformatics 25, https://doi.org/10.1093/bib/bbae153 (2024).

  186. Purwono, P., Wulandari, A. N. E., Salah, W. A. & Ma’Arif, A. Understanding Generative Adversarial Networks (GANs): A Review. Control Syst. Optim. Lett. 3, 36–45 (2025).

    Google Scholar 

  187. Ni, Y., Song, D., Liao, L., Zhang, X. & Wu, H. CAGAN: Consistent Adversarial Training Enhanced GANs https://doi.org/10.24963/ijcai.2018/359 (2018).

  188. Chen, Y. et al. Molecular language models: RNNs or transformer? Brief. Funct. Genomics 22, 392–400 (2023).

    Google Scholar 

  189. Laurent, C., Zhang, Y., Pereyra, G., Brakel, P. & Bengio, Y. Batch normalized recurrent neural networks. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2657-2661 (IEEE, 2016).

  190. Bagal, V., Vinod, P. K., Priyakumar, U. D. & Aggarwal, R. MolGPT: molecular generation using a transformer-decoder model. J. Chem. Inf. Model. 62, 2064–2076 (2021).

    Google Scholar 

  191. Ross, J. et al. GP-MoLFormer: a foundation model for molecular generation. https://doi.org/10.48550/arxiv.2405.04912 (2024).

  192. Miletic, M. & Sariyar, M. Challenges of using synthetic data generation methods for tabular microdata. Appl. Sci. 14, 5975 (2024).

    Google Scholar 

  193. Yu, M. S. et al. A variational autoencoder cascade generative adversarial network for scalable 3D object generation and reconstruction. https://doi.org/10.3390/s24030751 (2024).

  194. Cai, L. et al. AEGNN-M:A 3D Graph-Spatial Co-Representation Model for Molecular Property Prediction. IEEE J. Biomed. Health Inform. 29, 1726–1734 (2025).

    Google Scholar 

  195. Cao, N. & Kipf, T. MolGAN: An Implicit Generative Model For Small Molecular Graphs (Cornell University, 2018).

  196. Urbina, F., Lowden, C. T., Culberson, J. C. & Ekins, S. MegaSyn: integrating generative molecular design, automated analog designer, and synthetic viability prediction. ACS Omega 7, 18699–18713 (2022).

    Google Scholar 

  197. Xu, C., Zheng, P., Chen, H., Wang, H. & Wang, W. Geometric-facilitated denoising diffusion model for 3D molecule generation. Proc. AAAI Conf. Artif. Intell. 38, 338–346 (2024).

    Google Scholar 

  198. Regenwetter, L., Nobari, A. H. & Ahmed, F. Deep generative models in engineering design. A Review. J. Mech. Design 144, https://doi.org/10.1115/1.4053859 (2022).

  199. Liu, X. et al. DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology. J. Cheminformatics 13, https://doi.org/10.1186/s13321-021-00561-9 (2021).

Download references

Acknowledgements

This study was funded by the Liaoning Provincial Science and Technology Joint Program (Natural Science Foundation General Program, Grant No. 2024-MSLH-536).

Author information

Author notes
  1. These authors contributed equally: Da Li, Sanbao Shi.

Authors and Affiliations

  1. Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China

    Da Li, Sanbao Shi, Zhiyu Yu, Peng Xu & Cheng Zhang

Authors
  1. Da Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Sanbao Shi
    View author publications

    Search author on:PubMed Google Scholar

  3. Zhiyu Yu
    View author publications

    Search author on:PubMed Google Scholar

  4. Peng Xu
    View author publications

    Search author on:PubMed Google Scholar

  5. Cheng Zhang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Da Li. Sanbao Shi.: Conceptualization, methodology, writing—original draft; Writing— review. Zhiyu Yu. Peng Xu.: Data curation, Formal analysis; Writing–review and editing. Cheng Zhang.: Supervision, writing–review and editing. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Peng Xu or Cheng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Shi, S., Yu, Z. et al. AI accelerate the identification of druggable targets by 3D structures of proteins and compounds. npj Precis. Onc. (2026). https://doi.org/10.1038/s41698-026-01310-7

Download citation

  • Received: 20 October 2025

  • Accepted: 25 January 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41698-026-01310-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

AI Approaches in Drug Design

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • Open Access
  • About the Editors
  • Contact
  • Calls for Papers
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Precision Oncology (npj Precis. Onc.)

ISSN 2397-768X (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer