Table 1 Overview of included studies, categorised in order of machine learning aim

From: Systematic review of machine learning applications using nonoptical motion tracking in surgery

Index

Author

Year

Sensor

Video

Field

Task

Subjects

Trials

Machine Learning Model

Performance Metric (%)

Cross-Validation

Skill Assessment

1

Ahmidi, N72.

2015

EM

CO

Open

CM

14

86

(Stroke-based) SVM

MA: 74.24-90.91

LOTO, LOUO

Descriptive Curve Coding + SVM

MA: 81.03-91.66

HMM + SVM

MA: 23.06-70.93

2

Albasri, S12.

2021

DK (J)

CO

Robotic

BB

10

150

Procrustes DTW + kNN

MA: 88.9-100

LOSO

I

No

Open

CS

4

120

Procrustes DTW + kNN

MA: 80-100

LOSO, LOTO

3

Allen, B70.

2010

EM

No

Lap.

BB

30

696

SVM

MA: 90-93.7

Hold out

4

Baghdadi, A50.

2020

DK + M

No

Robotic

BB

30

1440

LASSO + RF

MA: 63

k-fold

LASSO + kNN

MA: 63

LASSO + LR

MA: 70

LASSO + RF + kNN + LR

MA: 78

5

Bissonnette, V46.

2019

DK

No

Open

CS

41

41

SVM

MA: 97.6

LOO, k-fold

kNN

MA: 92.7

LDA

MA: 87.8

Naive Bayes

MA: 86.9

Decision tree

MA: 70.7

6

Brown, J.D85.

2017

I + M

CO

Robotic

BB

38

110

SVM + Elastic Net Regression + Regression Trees + kNN

MA: 63.3-73.3

LOO

RF

MA: 51.7-75

7

Brown, K.C32.

2020

DK

CO

Robotic

CM

-

100-131

LR

MA: 76.32-98.27

k-fold

8

Chen, A.B39.

2021

DK

CO

Robotic

CM

17

68

RF

MA: 71.6-76.9

-

AdaBoost

MA: 69.9-80.1

Gradient Boosting

MA: 67.2-78.4

9

Fard, M.J53.

2018

DK (J)

CO

Robotic

BB

8

80

kNN

MA: 71.9-89.7

LOSO, LOUO

LR

MA: 70.2-89.9

SVM

MA: 75.4-79.8

10

Horeman, T92.

2012

M

No

Lap.

BB

31

93

PCA + LDA

MA: 78-84

LOO

11

Hung, A.J38.

2018

DK

No

Robotic

CM

9

78

RF

MA: 87.2

Stratified k-fold

SVM

MA: 83.3

LR

MA: 82.1

12

Hung, A.J10.

2019

DK

No

Robotic

CM

8

100

MLP (DeepSurv)

-

k-fold

13

Hung, A.J68.

2022

DK

CO

Robotic

BB

22

226

NoiseRank + LSTM

-

-

14

Jiang, J73.

2017

EM

CO

Robotic

BB

10

10

DTW

-

-

15

Jog, A67.

2011

DK

No

Robotic

BB

17

41

Decision tree + SVM

MA: 67.5-87.5

k-fold

16

Kelly, J.D40.

2020

DK

CO

Lap.

BB

117

454

Bi-LSTM

MA: 73.33-96.88

Hold out

17

Khan, A86.

2020

I

CO

Open

BB

15

50

SVM

-

LOTO, LOUO, k-fold

18

Laverde, R88.

2018

I

No

Lap.

BB

7

207

ANN

-

k-fold

19

Li, K51.

2020

DK (J)

No

Robotic

BB

-

96

kMC + DNN

ME: 9.18-9.47

-

20

Lin, Z89.

2011

I

No

Lap.

BB

16

48

PCA + LDA

MA: 93.75

LOO

21

Lin, Z87.

2013

I

No

Lap.

BB

16

96

PCA + LDA

MA: 94

LOO

22

Lyman, W.B52.

2021

DK

No

Robotic

CS

2

25

Kernel Regularised Linear Squares Multivariate prediction + Multivariate Linear Regression

MA: 89.3

-

23

Megali, G48.

2006

DK

No

Lap.

BB

6

24

HMM

-

Hold out

24

Oquendo, Y.A71.

2018

EM + M

CO

Lap.

BB

32

63

Regularised Least Squares + Regression Trees

MA: 38-88

LOUO

25

Sbernini, L90.

2018

I + M

No

Open

BB

18

360

LDA

ME:5.86-8.06

LOO

SVM

ME: 0.89-2.05

MLP

ME: 0.57-0.61

26

Sewell, C69.

2008

DK

CO

Open

CS

15

30

HMM

MA: 87.5

LOO

Naive Bayes

-

LR

MA: 50-100

27

Soangra, R13.

2022

I + EMG

No

Open + Lap. + Robotic

BB

26

234

RF

MA: 40-60

Hold out

Naive Bayes

MA: 28-47

SVM

MA: 35-57

28

Uemura, M41.

2018

EM

No

Lap.

BB

67

67

Chaotic NN

MA: 79

Hold out

29

Wang, Z.H43.

2018

DK (J)

CO

Robotic

BB

8

40

CNN

MA: 84.9-95.4

LOSO, Hold out

30

Watson, R.A91.

2014

I

No

Other

CS

24

48

SVM

MA: 83

-

31

Xu, J93.

2023

M

No

Open

BB

13

20

LSTM

MA: 76.67-78.86

LOUO

Bi-LSTM

MA: 80.51-84.92

GRU

MA: 75.46-77.57

Convolutional LSTM DNN

MA: 93.65-96.19

Transformer network

MA: 86.68-90.67

TCN

MA: 88.95-97.45

32

Zhang, D20.

2020

DK

Yes

Robotic

BB

8

66

CNN

MA: 84.72-97.92

LOSO

DK (J)

CO

Robotic

BB

8

103

CNN

MA: 80.80-99.17

LOSO

Feature Detection

33

Ahmidi, N21.

2017

DK (J)

CO

Robotic

BB

8

101

LDA + GMM-HMM

MA: 64.12-92.56

LOSO, LOUO

K-Singular Value Decomposition + Sparse-HMM

MA: 62.48-83.54

Markov semi-Markov CRF

MA: 44.68-81.99

Skip Chain CRF

MA: 74.77-85.18

Linear Dynamical System

MA: 47.96-84.61

DK (J)

Yes

Robotic

BB

8

101

Markov semi-Markov CRF

MA: 65.87-85.1

LOSO, LOUO

Skip Chain CRF

MA: 81.60-85.04

34

van Amsterdam, B63.

2019

DK (J)

CO

Robotic

BB

8

40

GMM

MA: 59-85

Experimental Validation

35

van Amsterdam, B45.

2020

DK (J)

CO

Robotic

BB

8

39

Bi-LSTM

MA: 85.1-89.2

LOUO

36

van Amsterdam, B22.

2022

DK (J)

Yes

Robotic

BB

8

39

CNN + Concatenation TCN

MA: 82.3

LOUO

CNN + Ensemble TCN

MA: 82.6

CNN + Multimodal Attention TCN

MA: 83.4

DK

Yes

Robotic

CM

8

45

CNN + Concatenation TCN

MA: 79.3

Hold out

CNN + Ensemble TCN

MA: 78.1

CNN + Multimodal Attention TCN

MA: 80.9

37

Despinoy, F61.

2016

DK

CO

Robotic

BB

3

12

kNN

MA: 78.4-97.4

LOO

SVM

MA: 77.5-96.2

38

DiPietro, R14.

2019

DK

CO

Robotic

BB

15

39

RNN

ME: 17.9

LOUO

LSTM

ME: 15.3

GRU

ME: 15.2

MIST RNN

ME: 15.3

DK (J)

CO

Robotic

BB

8

39

RNN

ME: 11.6

LOUO

LSTM

ME: 8.7

GRU

ME: 8.6

MIST RNN

ME: 9.7

39

Fard, M.J64.

2016

DK (J)

CO

Robotic

BB

8

-

PCA + DTW + Soft-Boundary Unsupervised Gesture Segmentation

MA: 64-73.8

Experimental Validation

40

Gao, Y23.

2016

DK (J)

CO

Robotic

BB

8

39

DTW + Autoencoder

MA: 68-84

-

DK

CO

Robotic

BB

15

55

DTW + Autoencoder

MA: 59-74

-

41

Goldbraikh, A81.

2022

EM

CO

Open

BB

24

96

MS-TCN + +

MA: 82.4-94.69

k-fold

LSTM

MA: 79.94-94.18

GRU

MA: 82.21-95.04

42

Goldbraikh, A24.

2024

EM

CO

Open

BB

25

11

Bi-LSTM MS-TCRN

MA: 83-84.2

k-fold

Bi-GRU MS-TCRN

MA: 83.1-84.3

EM

CO

Open

CM

52

255

Bi-LSTM MS-TCRN

MA: 77.8-80.5

LOUO

Bi-GRU MS-TCRN

MA: 77.4-79.2

DK (J)

CO

Robotic

BB

8

39

Bi-LSTM MS-TCRN

MA: 84.2-84.8

LOUO

Bi-GRU MS-TCRN

MA: 85.0-86.4

43

Itzkovich, D25.

2019

DK (J)

CO

Robotic

BB

8

39

LSTM

MA: 67-72

LOUO

DK

CO

Robotic

BB

2

14

LSTM

MA: 55-71

LOUO

44

Itzkovich, D26.

2022

DK (J)

CO

Robotic

BB

8

75

LSTM

MA: 46-64

Hold out

DK

CO

Robotic

BB

2

15

LSTM

MA: 8-52

Hold out

DK

CO

Robotic

CM

6

-

LSTM

MA: 13-68

Hold out

45

Lea, C65.

2016

DK (J)

CO

Robotic

BB

8

39

Latent Convolutional Skip Chain CRF

MA: 81.69-83.45

LOUO

46

Lin, H.C54.

2006

DK

No

Robotic

BB

2

27

LDA + Bayes Classifier

MA: 92.21-95.26

k-fold

47

Long, Y27.

2021

DK (J)

Yes

Robotic

BB

8

75

CNN + TCN-LSTM + Graph NN

MA: 87.9-88.1

LOUO

DK

Yes

Robotic

BB

-

36

CNN + TCN-LSTM + Graph NN

MA: 87.3-91.0

k-fold

48

Loukas, C75.

2013

EM

CO

Lap.

CS

21

21

Gaussian mixture MAR

-

-

49

Meißner, C84.

2014

I + EM

CO

Other

CS

2

24

HMM

MA: 81-99

LOO

50

Murali, A66.

2016

DK (J)

Yes

Robotic

BB

8

67

PCA + CNN + GMM + Transition state clustering

-

-

51

Peng, W62.

2019

DK

CO

Robotic

BB

12

360

DTW + Continuous HMM

MA: 94.73-97.48

Experimental Validation

52

Qin, Y28.

2020

DK (J)

Yes

Robotic

BB

8

39

CNN-TCN + LSTM-TCN

MA: 86.3

LOUO

DK

Yes

Robotic

CM

5

10

CNN-TCN + LSTM-TCN

MA: 82.7

LOUO

53

Zheng, Y74.

2022

EM

CO

Lap.

BB

29

29

LSTM

MA: 68.18-75.86

LOUO

54

Zia, A37.

2019

DK

Yes

Robotic

CM

-

100

CNN-LSTM + LSTM

-

Hold out

Skill Assessment and Feature Detection

55

Anh, N.X55.

2020

DK (J)

No

Robotic

BB

8

40

CNN + SVM

MA: 92.75-96.84

LOSO

LSTM + SVM

MA: 89.75-95.09

CNN-LSTM + SVM

MA: 90.98-96.39

Autoencoder + SVM

MA: 80.63-83.46

56

Baghdadi, A36.

2023

M

No

Open

CM

13

50

CNN + DNN-LSTM

MA FD: 82-95

k-fold

KNN + XGBOOST + DNN-LSTM

MA SA: 71

57

Ershad, M76.

2019

EM

CO

Robotic

BB

14

84

PCA + SVM

MA: 71.03-98.5

k-fold

58

Forestier, G15.

2018

DK (J)

CO

Robotic

BB

8

101

SAX-VSM

MA FD: 75.29-93.69

LOSO, LOUO

MA SA: 61.11-96.3

DK

No

Robotic

BB

3

30

SAX-VSM

MA FD: 100

LOO

MA SA: 83.33

DK

CO

Robotic

CS

6

27

SAX-VSM

MA SA: 85.19

LOO

59

King, R.C16.

2009

I + M

No

Lap.

BB

5

25

HMM

MA FD: 56-100

-

I + M

No

Lap.

CM

7

28

PCA + HMM + GMM Clustering

-

-

60

Loukas, C77.

2011

EM

CO

Lap.

BB

22

44

MAR + PCA + SVM

MA: 86-96

-

HMM

MA: 65-87

61

Loukas, C78.

2013

EM

CO

Lap.

CS

22

22

MAR

-

-

62

Nguyen, X.A17.

2019

I

CO

Open

BB

15

75

SVM

MA: 71.3-81.7

LOSO

CNN-LSTM + SVM

MA: 88.1-95.4

CNN-LSTM + SENet + SVM

MA: 90.3-96.7

CNN-LSTM + SENet + Restart + SVM

MA: 92.1-98.2

DK (J)

No

Robotic

BB

8

101

CNN-LSTM + SVM

MA: 91.5-97.3

LOSO

CNN-LSTM + SENet + SVM

MA: 94.7-98.3

CNN-LSTM + SENet + Restart + SVM

MA: 94.8-98.4

63

Reiley, C.E60.

2010

DK

CO

Robotic

BB

11

20

DTW + GMM/GMR + HMM

-

-

64

Rosen, J33.

2001

M

CO

Lap.

CM

10

10

kMC + HMM

MA: 87.5

-

65

Topalli, D49.

2019

DK

No

Other

BB

28

1260

kNN + AdaBoost M1

MA: 85.71

k-fold

kNN + Jrip

MA: 64.28-78.57

kNN + kNN

MA: 57.14-75

kNN + Locally Weighted Learning

MA: 67.86-82.14

kNN + LR

MA: 75-82.14

kNN + SVM

MA: 64.28-82.14

66

Wang, Z44.

2018b

DK (J)

CO

Robotic

BB

8

120

GRU-CNN

MA FD: 100

LOSO

MA SA: 96

67

Zia, A18.

2018

I

CO

Open

BB

41

103

ApEn + Cross ApEn + Nearest Neighbour

MA: 78.7-86.8

k-fold, LOO

I

Yes

Open

BB

41

103

kMC + ApEn + Cross ApEn + Nearest Neighbour

MA: 93.2-94

k-fold, LOO

Tool Tracking

68

Korte, C47.

2021

DK

No

Open

CS

5

60

LSTM-RNN

-

Experimental validation

69

Lee, E.J19.

2019

EM

Yes

Lap.

BB

-

1500

Random walk + Deep CNN

-

Hold out

EM

Yes

Lap.

CM

-

100

Random walk + Deep CNN

-

-

70

Liu, J34.

2023

DK

Yes

Robotic

CM

-

950

CNN

-

LOO

71

Pachtrachai, K30.

2021

DK

Yes

Robotic

BB

-

8502

CNN + LSTM

-

Experimental validation

DK

Yes

Robotic

CM

-

15002

CNN + LSTM

-

Experimental validation

72

Qin, Y29.

2020

DK (J)

Yes

Robotic

BB

8

39

CNN-LSTM + LSTM Encoder + LSTM Decoder

ME: 4.72-10.14

LOUO

DK

Yes

Robotic

CM

5

40

CNN-LSTM + LSTM Encoder + LSTM Decoder

ME: 1.1-2.43

LOUO

73

Rocha, C.D31.

2019

DK

Yes

Robotic

BB

-

910

GMM + CNN

MA: 99

Experimental validation

DK

Yes

Robotic

BB

-

2737

GMM + CNN

MA: 98.2

Experimental validation

DK

Yes

Robotic

CM

-

481

GMM + CNN

MA: 97

Experimental validation

74

Shu, X56.

2021

DK

No

Robotic

NCS

-

1524

MLP

ME: <1.5

Hold out

LSTM

ME: <1.5

75

Sun, Z83.

2018

EM

No

Other

NCS

-

150

ANN

-

Experimental validation

76

Wang, Z82.

2022

EM

No

Lap.

BB

4

80

LSTM

ME: 11.43-15.11

Hold out

77

Xu, W79.

2017

EM

No

Robotic

NCS

-

20000

GMR

MA: 87.39-95

Hold out

kNN

MA: 90.5-95.9

Extreme machine learning

MA: 98.2

78

Zhao, H59.

2018

DK (J)

Yes

Robotic

BB

8

67

PCA + DTW + Transition State Clustering Dense Convolutional Encoder-Decoder Network

MA: 60.1-70.6

LOO

Undesirable Motion Filtration

79

Sang, H57.

2016

I + DK

No

Other

NCS

-

 

Zero Phase Adaptive Fuzzy Kalman Filter

-

Experimental validation

80

Tatinati, S95.

2015

I

Yes

Other

NCS

3

6

Moving Window Least Squares - SVM

MA: 71

Experimental validation

81

Tatinati, S94.

2017

I

Yes

Other

NCS

3

9

Moving Window Least Squares - SVM

MA: 74

Experimental validation

Multidimensional Robust Extreme Learning Machine

MA: 78

Online sequential Multidimensional Robust Extreme Learning Machine

MA: 81

Other

82

Sabique, P.V35.

2023

M + DK

Yes

Robotic

BB

-

-

PCA + Generalised Discriminant Analysis + RNN-LSTM

-

Experimental validation

PCA + Generalised Discriminant Analysis + CNN-LSTM

-

PCA + GDA + Encoder network

-

83

Song, W80.

2006

M + EM

Yes

Open

BB

-

120

Fuzzy NN

-

-

84

Su, H58.

2019

M + DK

No

Robotic

NCS

-

73776

ANN

-

Experimental validation

  1. An overview of the methodologies and technologies employed across different studies.
  2. Sensor: DK device kinematics, (J) JHU-ISI Gesture and Skill Assessment Working Set dataset, I inertial, EM electromagnetic, M mechanical, EMG electromyography. Video: CO context only. Field: Lap. Laparoscopic. Task: BB basic bench-top, CS clinical simulation, NCS non-clinical simulation, CM clinical model. Machine Learning Model: SVM support vector machine, HMM hidden Markov model, DTW dynamic time warping, kNN k-nearest neighbours, LASSO least absolute shrinkage and selection operator, RF random forest, LR logarithmic regression, LDA linear discriminant analysis, PCA principal component analysis, MLP multilayer perceptron, LSTM long short-term memory, Bi- bidirectional, ANN artificial neural network, kMC k-means clustering, DNN deep neural network, NN neural network, CNN convolutional neural network, GRU gated recurrent unit, TCN temporal convolutional network, GMM Gaussian mixture model, CRF conditional random field, MIST mixed history, RNN recurrent neural network, MS multi-stage, TCRN temporal convolutional recurrent network, SAX-VSM symbolic aggregate approximation vector space model, MAR multivariate autoregressive, SENet squeeze-and-excitation network, GMR Gaussian mixture regression, ApEn approximate entropy. Performance Metric: MA mean accuracy, ME mean error. Cross Validation: LOTO leave one trial out, LOUO leave one user out, LOSO leave one super-trial out, LOO leave one out.