Table 1 Overview of included studies, categorised in order of machine learning aim
From: Systematic review of machine learning applications using nonoptical motion tracking in surgery
Index | Author | Year | Sensor | Video | Field | Task | Subjects | Trials | Machine Learning Model | Performance Metric (%) | Cross-Validation |
---|---|---|---|---|---|---|---|---|---|---|---|
Skill Assessment | |||||||||||
1 | Ahmidi, N72. | 2015 | EM | CO | Open | CM | 14 | 86 | (Stroke-based) SVM | MA: 74.24-90.91 | LOTO, LOUO |
Descriptive Curve Coding + SVM | MA: 81.03-91.66 | ||||||||||
HMM + SVM | MA: 23.06-70.93 | ||||||||||
2 | Albasri, S12. | 2021 | DK (J) | CO | Robotic | BB | 10 | 150 | Procrustes DTW + kNN | MA: 88.9-100 | LOSO |
I | No | Open | CS | 4 | 120 | Procrustes DTW + kNN | MA: 80-100 | LOSO, LOTO | |||
3 | Allen, B70. | 2010 | EM | No | Lap. | BB | 30 | 696 | SVM | MA: 90-93.7 | Hold out |
4 | Baghdadi, A50. | 2020 | DK + M | No | Robotic | BB | 30 | 1440 | LASSO + RF | MA: 63 | k-fold |
LASSO + kNN | MA: 63 | ||||||||||
LASSO + LR | MA: 70 | ||||||||||
LASSO + RF + kNN + LR | MA: 78 | ||||||||||
5 | Bissonnette, V46. | 2019 | DK | No | Open | CS | 41 | 41 | SVM | MA: 97.6 | LOO, k-fold |
kNN | MA: 92.7 | ||||||||||
LDA | MA: 87.8 | ||||||||||
Naive Bayes | MA: 86.9 | ||||||||||
Decision tree | MA: 70.7 | ||||||||||
6 | Brown, J.D85. | 2017 | I + M | CO | Robotic | BB | 38 | 110 | SVM + Elastic Net Regression + Regression Trees + kNN | MA: 63.3-73.3 | LOO |
RF | MA: 51.7-75 | ||||||||||
7 | Brown, K.C32. | 2020 | DK | CO | Robotic | CM | - | 100-131 | LR | MA: 76.32-98.27 | k-fold |
8 | Chen, A.B39. | 2021 | DK | CO | Robotic | CM | 17 | 68 | RF | MA: 71.6-76.9 | - |
AdaBoost | MA: 69.9-80.1 | ||||||||||
Gradient Boosting | MA: 67.2-78.4 | ||||||||||
9 | Fard, M.J53. | 2018 | DK (J) | CO | Robotic | BB | 8 | 80 | kNN | MA: 71.9-89.7 | LOSO, LOUO |
LR | MA: 70.2-89.9 | ||||||||||
SVM | MA: 75.4-79.8 | ||||||||||
10 | Horeman, T92. | 2012 | M | No | Lap. | BB | 31 | 93 | PCA + LDA | MA: 78-84 | LOO |
11 | Hung, A.J38. | 2018 | DK | No | Robotic | CM | 9 | 78 | RF | MA: 87.2 | Stratified k-fold |
SVM | MA: 83.3 | ||||||||||
LR | MA: 82.1 | ||||||||||
12 | Hung, A.J10. | 2019 | DK | No | Robotic | CM | 8 | 100 | MLP (DeepSurv) | - | k-fold |
13 | Hung, A.J68. | 2022 | DK | CO | Robotic | BB | 22 | 226 | NoiseRank + LSTM | - | - |
14 | Jiang, J73. | 2017 | EM | CO | Robotic | BB | 10 | 10 | DTW | - | - |
15 | Jog, A67. | 2011 | DK | No | Robotic | BB | 17 | 41 | Decision tree + SVM | MA: 67.5-87.5 | k-fold |
16 | Kelly, J.D40. | 2020 | DK | CO | Lap. | BB | 117 | 454 | Bi-LSTM | MA: 73.33-96.88 | Hold out |
17 | Khan, A86. | 2020 | I | CO | Open | BB | 15 | 50 | SVM | - | LOTO, LOUO, k-fold |
18 | Laverde, R88. | 2018 | I | No | Lap. | BB | 7 | 207 | ANN | - | k-fold |
19 | Li, K51. | 2020 | DK (J) | No | Robotic | BB | - | 96 | kMC + DNN | ME: 9.18-9.47 | - |
20 | Lin, Z89. | 2011 | I | No | Lap. | BB | 16 | 48 | PCA + LDA | MA: 93.75 | LOO |
21 | Lin, Z87. | 2013 | I | No | Lap. | BB | 16 | 96 | PCA + LDA | MA: 94 | LOO |
22 | Lyman, W.B52. | 2021 | DK | No | Robotic | CS | 2 | 25 | Kernel Regularised Linear Squares Multivariate prediction + Multivariate Linear Regression | MA: 89.3 | - |
23 | Megali, G48. | 2006 | DK | No | Lap. | BB | 6 | 24 | HMM | - | Hold out |
24 | Oquendo, Y.A71. | 2018 | EM + M | CO | Lap. | BB | 32 | 63 | Regularised Least Squares + Regression Trees | MA: 38-88 | LOUO |
25 | Sbernini, L90. | 2018 | I + M | No | Open | BB | 18 | 360 | LDA | ME:5.86-8.06 | LOO |
SVM | ME: 0.89-2.05 | ||||||||||
MLP | ME: 0.57-0.61 | ||||||||||
26 | Sewell, C69. | 2008 | DK | CO | Open | CS | 15 | 30 | HMM | MA: 87.5 | LOO |
Naive Bayes | - | ||||||||||
LR | MA: 50-100 | ||||||||||
27 | Soangra, R13. | 2022 | I + EMG | No | Open + Lap. + Robotic | BB | 26 | 234 | RF | MA: 40-60 | Hold out |
Naive Bayes | MA: 28-47 | ||||||||||
SVM | MA: 35-57 | ||||||||||
28 | Uemura, M41. | 2018 | EM | No | Lap. | BB | 67 | 67 | Chaotic NN | MA: 79 | Hold out |
29 | Wang, Z.H43. | 2018 | DK (J) | CO | Robotic | BB | 8 | 40 | CNN | MA: 84.9-95.4 | LOSO, Hold out |
30 | Watson, R.A91. | 2014 | I | No | Other | CS | 24 | 48 | SVM | MA: 83 | - |
31 | Xu, J93. | 2023 | M | No | Open | BB | 13 | 20 | LSTM | MA: 76.67-78.86 | LOUO |
Bi-LSTM | MA: 80.51-84.92 | ||||||||||
GRU | MA: 75.46-77.57 | ||||||||||
Convolutional LSTM DNN | MA: 93.65-96.19 | ||||||||||
Transformer network | MA: 86.68-90.67 | ||||||||||
TCN | MA: 88.95-97.45 | ||||||||||
32 | Zhang, D20. | 2020 | DK | Yes | Robotic | BB | 8 | 66 | CNN | MA: 84.72-97.92 | LOSO |
DK (J) | CO | Robotic | BB | 8 | 103 | CNN | MA: 80.80-99.17 | LOSO | |||
Feature Detection | |||||||||||
33 | Ahmidi, N21. | 2017 | DK (J) | CO | Robotic | BB | 8 | 101 | LDA + GMM-HMM | MA: 64.12-92.56 | LOSO, LOUO |
K-Singular Value Decomposition + Sparse-HMM | MA: 62.48-83.54 | ||||||||||
Markov semi-Markov CRF | MA: 44.68-81.99 | ||||||||||
Skip Chain CRF | MA: 74.77-85.18 | ||||||||||
Linear Dynamical System | MA: 47.96-84.61 | ||||||||||
DK (J) | Yes | Robotic | BB | 8 | 101 | Markov semi-Markov CRF | MA: 65.87-85.1 | LOSO, LOUO | |||
Skip Chain CRF | MA: 81.60-85.04 | ||||||||||
34 | van Amsterdam, B63. | 2019 | DK (J) | CO | Robotic | BB | 8 | 40 | GMM | MA: 59-85 | Experimental Validation |
35 | van Amsterdam, B45. | 2020 | DK (J) | CO | Robotic | BB | 8 | 39 | Bi-LSTM | MA: 85.1-89.2 | LOUO |
36 | van Amsterdam, B22. | 2022 | DK (J) | Yes | Robotic | BB | 8 | 39 | CNN + Concatenation TCN | MA: 82.3 | LOUO |
CNN + Ensemble TCN | MA: 82.6 | ||||||||||
CNN + Multimodal Attention TCN | MA: 83.4 | ||||||||||
DK | Yes | Robotic | CM | 8 | 45 | CNN + Concatenation TCN | MA: 79.3 | Hold out | |||
CNN + Ensemble TCN | MA: 78.1 | ||||||||||
CNN + Multimodal Attention TCN | MA: 80.9 | ||||||||||
37 | Despinoy, F61. | 2016 | DK | CO | Robotic | BB | 3 | 12 | kNN | MA: 78.4-97.4 | LOO |
SVM | MA: 77.5-96.2 | ||||||||||
38 | DiPietro, R14. | 2019 | DK | CO | Robotic | BB | 15 | 39 | RNN | ME: 17.9 | LOUO |
LSTM | ME: 15.3 | ||||||||||
GRU | ME: 15.2 | ||||||||||
MIST RNN | ME: 15.3 | ||||||||||
DK (J) | CO | Robotic | BB | 8 | 39 | RNN | ME: 11.6 | LOUO | |||
LSTM | ME: 8.7 | ||||||||||
GRU | ME: 8.6 | ||||||||||
MIST RNN | ME: 9.7 | ||||||||||
39 | Fard, M.J64. | 2016 | DK (J) | CO | Robotic | BB | 8 | - | PCA + DTW + Soft-Boundary Unsupervised Gesture Segmentation | MA: 64-73.8 | Experimental Validation |
40 | Gao, Y23. | 2016 | DK (J) | CO | Robotic | BB | 8 | 39 | DTW + Autoencoder | MA: 68-84 | - |
DK | CO | Robotic | BB | 15 | 55 | DTW + Autoencoder | MA: 59-74 | - | |||
41 | Goldbraikh, A81. | 2022 | EM | CO | Open | BB | 24 | 96 | MS-TCN + + | MA: 82.4-94.69 | k-fold |
LSTM | MA: 79.94-94.18 | ||||||||||
GRU | MA: 82.21-95.04 | ||||||||||
42 | Goldbraikh, A24. | 2024 | EM | CO | Open | BB | 25 | 11 | Bi-LSTM MS-TCRN | MA: 83-84.2 | k-fold |
Bi-GRU MS-TCRN | MA: 83.1-84.3 | ||||||||||
EM | CO | Open | CM | 52 | 255 | Bi-LSTM MS-TCRN | MA: 77.8-80.5 | LOUO | |||
Bi-GRU MS-TCRN | MA: 77.4-79.2 | ||||||||||
DK (J) | CO | Robotic | BB | 8 | 39 | Bi-LSTM MS-TCRN | MA: 84.2-84.8 | LOUO | |||
Bi-GRU MS-TCRN | MA: 85.0-86.4 | ||||||||||
43 | Itzkovich, D25. | 2019 | DK (J) | CO | Robotic | BB | 8 | 39 | LSTM | MA: 67-72 | LOUO |
DK | CO | Robotic | BB | 2 | 14 | LSTM | MA: 55-71 | LOUO | |||
44 | Itzkovich, D26. | 2022 | DK (J) | CO | Robotic | BB | 8 | 75 | LSTM | MA: 46-64 | Hold out |
DK | CO | Robotic | BB | 2 | 15 | LSTM | MA: 8-52 | Hold out | |||
DK | CO | Robotic | CM | 6 | - | LSTM | MA: 13-68 | Hold out | |||
45 | Lea, C65. | 2016 | DK (J) | CO | Robotic | BB | 8 | 39 | Latent Convolutional Skip Chain CRF | MA: 81.69-83.45 | LOUO |
46 | Lin, H.C54. | 2006 | DK | No | Robotic | BB | 2 | 27 | LDA + Bayes Classifier | MA: 92.21-95.26 | k-fold |
47 | Long, Y27. | 2021 | DK (J) | Yes | Robotic | BB | 8 | 75 | CNN + TCN-LSTM + Graph NN | MA: 87.9-88.1 | LOUO |
DK | Yes | Robotic | BB | - | 36 | CNN + TCN-LSTM + Graph NN | MA: 87.3-91.0 | k-fold | |||
48 | Loukas, C75. | 2013 | EM | CO | Lap. | CS | 21 | 21 | Gaussian mixture MAR | - | - |
49 | Meißner, C84. | 2014 | I + EM | CO | Other | CS | 2 | 24 | HMM | MA: 81-99 | LOO |
50 | Murali, A66. | 2016 | DK (J) | Yes | Robotic | BB | 8 | 67 | PCA + CNN + GMM + Transition state clustering | - | - |
51 | Peng, W62. | 2019 | DK | CO | Robotic | BB | 12 | 360 | DTW + Continuous HMM | MA: 94.73-97.48 | Experimental Validation |
52 | Qin, Y28. | 2020 | DK (J) | Yes | Robotic | BB | 8 | 39 | CNN-TCN + LSTM-TCN | MA: 86.3 | LOUO |
DK | Yes | Robotic | CM | 5 | 10 | CNN-TCN + LSTM-TCN | MA: 82.7 | LOUO | |||
53 | Zheng, Y74. | 2022 | EM | CO | Lap. | BB | 29 | 29 | LSTM | MA: 68.18-75.86 | LOUO |
54 | Zia, A37. | 2019 | DK | Yes | Robotic | CM | - | 100 | CNN-LSTM + LSTM | - | Hold out |
Skill Assessment and Feature Detection | |||||||||||
55 | Anh, N.X55. | 2020 | DK (J) | No | Robotic | BB | 8 | 40 | CNN + SVM | MA: 92.75-96.84 | LOSO |
LSTM + SVM | MA: 89.75-95.09 | ||||||||||
CNN-LSTM + SVM | MA: 90.98-96.39 | ||||||||||
Autoencoder + SVM | MA: 80.63-83.46 | ||||||||||
56 | Baghdadi, A36. | 2023 | M | No | Open | CM | 13 | 50 | CNN + DNN-LSTM | MA FD: 82-95 | k-fold |
KNN + XGBOOST + DNN-LSTM | MA SA: 71 | ||||||||||
57 | Ershad, M76. | 2019 | EM | CO | Robotic | BB | 14 | 84 | PCA + SVM | MA: 71.03-98.5 | k-fold |
58 | Forestier, G15. | 2018 | DK (J) | CO | Robotic | BB | 8 | 101 | SAX-VSM | MA FD: 75.29-93.69 | LOSO, LOUO |
MA SA: 61.11-96.3 | |||||||||||
DK | No | Robotic | BB | 3 | 30 | SAX-VSM | MA FD: 100 | LOO | |||
MA SA: 83.33 | |||||||||||
DK | CO | Robotic | CS | 6 | 27 | SAX-VSM | MA SA: 85.19 | LOO | |||
59 | King, R.C16. | 2009 | I + M | No | Lap. | BB | 5 | 25 | HMM | MA FD: 56-100 | - |
I + M | No | Lap. | CM | 7 | 28 | PCA + HMM + GMM Clustering | - | - | |||
60 | Loukas, C77. | 2011 | EM | CO | Lap. | BB | 22 | 44 | MAR + PCA + SVM | MA: 86-96 | - |
HMM | MA: 65-87 | ||||||||||
61 | Loukas, C78. | 2013 | EM | CO | Lap. | CS | 22 | 22 | MAR | - | - |
62 | Nguyen, X.A17. | 2019 | I | CO | Open | BB | 15 | 75 | SVM | MA: 71.3-81.7 | LOSO |
CNN-LSTM + SVM | MA: 88.1-95.4 | ||||||||||
CNN-LSTM + SENet + SVM | MA: 90.3-96.7 | ||||||||||
CNN-LSTM + SENet + Restart + SVM | MA: 92.1-98.2 | ||||||||||
DK (J) | No | Robotic | BB | 8 | 101 | CNN-LSTM + SVM | MA: 91.5-97.3 | LOSO | |||
CNN-LSTM + SENet + SVM | MA: 94.7-98.3 | ||||||||||
CNN-LSTM + SENet + Restart + SVM | MA: 94.8-98.4 | ||||||||||
63 | Reiley, C.E60. | 2010 | DK | CO | Robotic | BB | 11 | 20 | DTW + GMM/GMR + HMM | - | - |
64 | Rosen, J33. | 2001 | M | CO | Lap. | CM | 10 | 10 | kMC + HMM | MA: 87.5 | - |
65 | Topalli, D49. | 2019 | DK | No | Other | BB | 28 | 1260 | kNN + AdaBoost M1 | MA: 85.71 | k-fold |
kNN + Jrip | MA: 64.28-78.57 | ||||||||||
kNN + kNN | MA: 57.14-75 | ||||||||||
kNN + Locally Weighted Learning | MA: 67.86-82.14 | ||||||||||
kNN + LR | MA: 75-82.14 | ||||||||||
kNN + SVM | MA: 64.28-82.14 | ||||||||||
66 | Wang, Z44. | 2018b | DK (J) | CO | Robotic | BB | 8 | 120 | GRU-CNN | MA FD: 100 | LOSO |
MA SA: 96 | |||||||||||
67 | Zia, A18. | 2018 | I | CO | Open | BB | 41 | 103 | ApEn + Cross ApEn + Nearest Neighbour | MA: 78.7-86.8 | k-fold, LOO |
I | Yes | Open | BB | 41 | 103 | kMC + ApEn + Cross ApEn + Nearest Neighbour | MA: 93.2-94 | k-fold, LOO | |||
Tool Tracking | |||||||||||
68 | Korte, C47. | 2021 | DK | No | Open | CS | 5 | 60 | LSTM-RNN | - | Experimental validation |
69 | Lee, E.J19. | 2019 | EM | Yes | Lap. | BB | - | 1500 | Random walk + Deep CNN | - | Hold out |
EM | Yes | Lap. | CM | - | 100 | Random walk + Deep CNN | - | - | |||
70 | Liu, J34. | 2023 | DK | Yes | Robotic | CM | - | 950 | CNN | - | LOO |
71 | Pachtrachai, K30. | 2021 | DK | Yes | Robotic | BB | - | 8502 | CNN + LSTM | - | Experimental validation |
DK | Yes | Robotic | CM | - | 15002 | CNN + LSTM | - | Experimental validation | |||
72 | Qin, Y29. | 2020 | DK (J) | Yes | Robotic | BB | 8 | 39 | CNN-LSTM + LSTM Encoder + LSTM Decoder | ME: 4.72-10.14 | LOUO |
DK | Yes | Robotic | CM | 5 | 40 | CNN-LSTM + LSTM Encoder + LSTM Decoder | ME: 1.1-2.43 | LOUO | |||
73 | Rocha, C.D31. | 2019 | DK | Yes | Robotic | BB | - | 910 | GMM + CNN | MA: 99 | Experimental validation |
DK | Yes | Robotic | BB | - | 2737 | GMM + CNN | MA: 98.2 | Experimental validation | |||
DK | Yes | Robotic | CM | - | 481 | GMM + CNN | MA: 97 | Experimental validation | |||
74 | Shu, X56. | 2021 | DK | No | Robotic | NCS | - | 1524 | MLP | ME: <1.5 | Hold out |
LSTM | ME: <1.5 | ||||||||||
75 | Sun, Z83. | 2018 | EM | No | Other | NCS | - | 150 | ANN | - | Experimental validation |
76 | Wang, Z82. | 2022 | EM | No | Lap. | BB | 4 | 80 | LSTM | ME: 11.43-15.11 | Hold out |
77 | Xu, W79. | 2017 | EM | No | Robotic | NCS | - | 20000 | GMR | MA: 87.39-95 | Hold out |
kNN | MA: 90.5-95.9 | ||||||||||
Extreme machine learning | MA: 98.2 | ||||||||||
78 | Zhao, H59. | 2018 | DK (J) | Yes | Robotic | BB | 8 | 67 | PCA + DTW + Transition State Clustering Dense Convolutional Encoder-Decoder Network | MA: 60.1-70.6 | LOO |
Undesirable Motion Filtration | |||||||||||
79 | Sang, H57. | 2016 | I + DK | No | Other | NCS | - |  | Zero Phase Adaptive Fuzzy Kalman Filter | - | Experimental validation |
80 | Tatinati, S95. | 2015 | I | Yes | Other | NCS | 3 | 6 | Moving Window Least Squares - SVM | MA: 71 | Experimental validation |
81 | Tatinati, S94. | 2017 | I | Yes | Other | NCS | 3 | 9 | Moving Window Least Squares - SVM | MA: 74 | Experimental validation |
Multidimensional Robust Extreme Learning Machine | MA: 78 | ||||||||||
Online sequential Multidimensional Robust Extreme Learning Machine | MA: 81 | ||||||||||
Other | |||||||||||
82 | Sabique, P.V35. | 2023 | M + DK | Yes | Robotic | BB | - | - | PCA + Generalised Discriminant Analysis + RNN-LSTM | - | Experimental validation |
PCA + Generalised Discriminant Analysis + CNN-LSTM | - | ||||||||||
PCA + GDA + Encoder network | - | ||||||||||
83 | Song, W80. | 2006 | M + EM | Yes | Open | BB | - | 120 | Fuzzy NN | - | - |
84 | Su, H58. | 2019 | M + DK | No | Robotic | NCS | - | 73776 | ANN | - | Experimental validation |